MONASH MONASH

@ University ggal(g\JoEE’S

ETC4500/ETC5450
Advanced R programming

Week 1: Foundations of R programming

arp.numbat.space

https://arp.numbat.space

Introduction to R
Names and values

Vectors

Expectations

= You know R and RStudio

m You have a basic understanding of programming (for
loops, if statements, functions)

m You can use Git and GitHub (https://happygitwithr.com)

Unit resources

m Everything on https://arp.numbat.space
m Assignments submitted on Github Classroom
m Discussion on Ed 3

m Use your monash edu address.

m Apply to GitHub Global Campus as a student
(https://education.github.com).

m Gives you free access to private repos and GitHub Copilot.

m Add GitHub Copilot to RStudio settings.

Introduction to R

m S (1976, Chambers, Becker and Wilks; Bell Labs, USA)
m S-PLUS (1988, Doug Martin; Uni of Washington, USA)
m R (1993, lhaka and Gentleman; Uni of Auckland, NZ)

R history

m S (1976, Chambers, Becker and Wilks; Bell Labs, USA)
m S-PLUS (1988, Doug Martin; Uni of Washington, USA)
m R (1993, lhaka and Gentleman; Uni of Auckland, NZ)

R influenced by

m Lisp (functional programming, environments, dynamic
typing)

m Scheme (functional programming, lexical scoping)

m S and S-PLUS (syntax)

m Free, open source, and on every major platform.

m A diverse and welcoming community

m A massive set of packages, often cutting-edge.

m Powerful communication tools (Shiny, Rmarkdown, quarto)

m RStudio IDE

m Deep-seated language support for data analysis.

m A strong foundation of functional programming.

m Posit

m Easy connection to high-performance programming
languages like C, Fortran, and C++. 7

R challenges

m R users are not usually programmers. Most R code by
ordinary users is not very elegant, fast, or easy to
understand.

m R users more focused on results than good software
practices.

m R packages are inconsistent in design.

m R can be slow.

Names and values

Given the following data frame, how do | create a new column
called “3” that contains the sum of 1 and 2? You may only use $,
not [[. What makes 1, 2, and 3 challenging as variable names?

df <- data.frame(runif(3), runif(3))
names (df) <- c(1, 2)

In the following code, how much memory does y occupy?
X <- runif(le6)

y <= list(x, x, X)

On which line does a get copied in the following example?

a <- c(1, 5, 3, 2)
b <- a

b[[1]] <- 10 10

x <= c(1, 2, 3) X 11213

0x74b

m Creates an object, a vector of values, c(1, 2, 3).
m Binds that object to a name, x.

m A name is a reference (or pointer) to a value.

1

x <= c(1, 2, 3) X 11213

0x74b

m Creates an object, a vector of values, c(1, 2, 3).
m Binds that object to a name, x.

m A name is a reference (or pointer) to a value.
DEE
> 1| 2|3
y <= X 'il'

0x74b

m Binds the same object to a new name, y.

1

library(lobstr)
obj_addr(x)

[1] "Ox55baa524b958"

obj_addr(y)

[1] "Ox55baa524b958"

These identifiers are long, and change every time you restart R.

12

Syntactic names

A syntactic name:

m must consist of letters, digits, . and _

m can't begin with _, or a digit, or a . followed by a digit

m can't be a reserved word like TRUE, NULL, if, and function
_abc <- 1

#> Error: unexpected input in "_"

if <- 10
#> Error: unexpected assignment in "if <-"

13

Syntactic names

A syntactic name:

m must consist of letters, digits, . and _

m can't begin with _, or a digit, or a . followed by a digit

m can't be a reserved word like TRUE, NULL, if, and function
_abc <- 1

#> Error: unexpected input in "_"

if <- 10
#> Error: unexpected assignment in "if <-"

It's possible to override these rules using backticks.

T _abcT <- 1

~ _abc® 13

Copy-on-modify

Consider the following code. It binds x and y to the same
underlying value, then modifies y.
B1]2]3]

x <= c(1, 2, 3)
y <= X 0x74b

14

Copy-on-modify

Consider the following code. It binds x and y to the same
underlying value, then modifies y.

X < (1, 2, 3) $1]2]3]
y <-= X 0x74b
y[[3]1] <- 4 11213

X

75

[1] 1 2 3

14

tracemem()

You can see when an object gets copied using tracemem().

x <= c(1, 2, 3)
tracemem(x)

[1] "<Ox55baa5128208>"

y <= x
y[[3]1] <= 4L

tracemem[0x55baa5128208 -> 0x55baala59798]: eval eval eval_with_user_handlers withVisible wit

y[[3]] <= 5L

tracemem[0x55baala59798 -> 0Ox55baa4fa0578]: eval eval eval_with_user_handlers withVisible wit

untracemem(x)

15

Modify-in-place

If an object has a single name bound to it, R will modify it in
place:

v <- c(1, 2, 3)

v 11213
0x207

v[[3]] <- 4

v 112]4
0x207

16

The same rules for copying also apply to function calls.

f <- function(a) {
a

}

x <= c(1, 2, 3)
tracemem(x)

[1] "<Ox55baa4f8ee68>"

z <- f(x)
there's no copy here!
untracemem(x)

17

Lists store references to their elements,
not the elements themselves. []

11 <- list(1, 2, 3)

18

Lists store references to their elements,
not the elements themselves. []

11 <- list(1, 2, 3)

= eTele

12 <- 11

18

Lists store references to their elements,
not the elements themselves. []

11 <- list(1, 2, 3)

12 <- 11

12[[3]] <- 4
18

(@ }>0]e]

Data frames are lists of vectors.

dl <- data.frame(x = c(1, 5, 6), y = c(2, 4, 3))

19

(1 }>0]e]

Data frames are lists of vectors.

dl <- data.frame(x = c(1, 5, 6), y = c(2, 4, 3))

Modifying a column:

d2 <= di1
d2[, 2] <- d2[, 2] * 2

19

Data frames are lists of vectors.

dl <- data.frame(x = c(1, 5, 6), y = c(2, 4, 3))

Modifying a row:

d3 <= d1
d3[1,] <- d3[1,] * 3

Character vectors

X <_ C("a", "all, Ilabcll, "dll)
X "a" "a" "abcll "d"
= Not quite!

m R actually uses a global string pool where each element is a
pointer to a string in the pool

Object size

lobstr::obj_size() gives the size of an object in memory.

obj_size(ggplot2: :diamonds)

3.46 MB

banana <- '"bananas bananas bananas"
obj_size(banana)

136 B

obj_size(rep(banana, 100))

928 B

22

Object size

X <- runif(le6)
obj_size(x)

8.00 MB

y <= list(x, x, X)
obj_size(y)

8.00 MB

obj_size(x, y)

8.00 MB

23

ALTREP

obj_size(1:3)

680 B

obj_size(1l:1e6)

680 B

obj_size(c(l:1e6, 10))

8.00 MB

obj_size(2 *x (1l:1e6))

8.00 MB %

For loops

Loops have a reputation for being slow, but often that is
caused by iterations creating copies.

x <- data.frame(matrix(runif(3 * le4), ncol
medians <- vapply(x, median, numeric(l))

tracemem(x)

for (i in seqg_along(medians)) {
x[[11] <= x[[i]] - medians[[i]]

}

tracemem[0x55baa51f7048
tracemem[0x55baa5180ca8
tracemem[0x55baa5180d98
tracemem[0x55baa5180e38
tracemem[0x55baa5181018
tracemem[0x55baa5181108

0x55baa5180ca8]:
0x55baa5180d98] :
Ox55baa5180e38]:
0x55baa5181018] :
0x55baa5181108]:
0x55baa51811f8]:

eval
[[<-.
eval
[[<-.
eval

[[<-.

= 3))

eval eval_with_user_handlers withVisible wit
data.frame [[<- eval eval eval_with_user_han
eval eval_with_user_handlers withVisible wit
data.frame [[<- eval eval eval_with_user_han
eval eval_with_user_handlers withVisible wit
data.frame [[<- eval eval eval_with_user_han

m Each iteration copies the data frame two times! 25

For loops

The same problem but with a list.
y <= as.list(x)
tracemem(y)

for (i in 1:3) {

y[[i]] <= y[[i]] - medians[[i]]
}

tracemem[0x55baa516e558 -> 0Ox55baa51443b8]: eval eval eval_with_user_handlers withVisible wit

m Only one copy created

26

Don’t allocate memory in a for loop

Allocating memory within the loop # Allocating memory before the loop
system.time(system.time(
{ {
x <- NULL X <- numeric(le5)
for(i in seq(le5)) { for(i in seq(le5)) {
x <= clx, 1) x[1] <= 1
} }
} }
))
user system elapsed user system elapsed
6.358 0.008 6.366 0.006 0.000 0.006

27

Unbinding and the garbage collector

x <= 1:3 X 112]3
ox74b

28

Unbinding and the garbage collector

x <- 1:3 X 11213
0x74b
1213
X <= 2:4

28

Unbinding and the garbage collector

x <- 1:3 X 11213
0x74b
11213

X <= 2:4
0x74b
X 21314
0x361
rm(x) 11213
0x74b
21314

0x361 28

Garbage collection

m Garbage collection (GC) frees up memory by deleting R
objects that are no longer used, and by requesting more
memory from the operating system if needed.

m R traces every object that's reachable from the global
environment (recursively).

m GC runs automatically whenever R needs more memory to
create a new object.

m You can force garbage collection by calling gc (). But it’s
never necessary.

29

Vectors

30

Vector NULL

Atomic List

m Vectors come in two flavours: atomic vectors and lists

m For atomic vectors, all elements must have same type

m For lists, elements can have different types

m NULL is like a generic zero length vector

m Scalars are just vectors of length 1

m Every vector can also have attributes: a named list of
arbitrary metadata.

m The dimension attribute turns vectors into matrices and
arrays.

m The class attribute powers the S3 object system. 7

Atomic vectors

m Four primary types of atomic vectors: logical, integer,
double, and character (which contains strings).

m Collectively integer and double vectors are known as

numeric vectors Vector
m Two rare types: T
Atomic
» complex
> raw. T
Numeric

2

Logical Integer Double Character 2

m Logicals: TRUE or FALSE, or abbreviated (T or F).

m Doubles: decimal (0.1234), scientific (1.23e4), or
hexadecimal (oxcafe). Special values: Inf, -Inf, and NaN
(not a number).

m Integers: 1234L, 1e4l, or 0xcafeL. Can not contain
fractional values.

m Strings: "hi" or 'bye'. Special characters are escaped
with \.

33

Making longer vectors with c ()

Use c() to create longer vectors from shorter ones.

lgl_var <- c(TRUE, FALSE) (db1_var >l 1.0[2.54.5]
int_var <- c(1L, 6L, 10L) -

1nt_var'—>| 1 6 | 10
dbl_var <- c(1, 2.5, 4.5) [| | |
chr_var <- c("these are", "some strings") [lgl_varH TRUE | FALSE |

[chr_var)—»' "these are"” | "some strings”

When the inputs are atomic vectors,
c () always flattens.

c(c(1, 2), c(3, 4))

[1] 12 3 4

34

Types and length

You can determine the type of a vector with typeof () and its length
with length().

typeof(lgl_var)

[1] "logical"

typeof (int_var)

[1] "dinteger"

typeof (dbl_var)

[1] "double"

typeof (chr_var)

[1] "character" 35

Most computations involving a missing value will return
another missing value.

NA > 5

[1] NA

10 * NA

[1] NA

I'NA

[1] NA

36

Exceptions:
NA * 0

[1] 1

NA | TRUE

[1] TRUE

NA & FALSE

[1] FALSE

37

Use is.na() to check for missingness

x <= c(NA, 5, NA, 10)
x == NA

[1] NA NA NA NA

is.na(x)

[1] TRUE FALSE TRUE FALSE

There are actually four missing values: NA (logical), NA_integer_
(integer), NA_real_ (double), and NA_character_ (character).

38

Coercion

m For atomic vectors, all elements must be the same type.
m When you combine different types they are coerced in a fixed
order: logical - integer > double - character.
str(c("a", 1))
@iip [[fg2)] Tem Tas

x <- c(FALSE, FALSE, TRUE)
as.numeric(x)

[1] 0 0 1

sum(x)

[1] 1

as.integer(c("1", "1.5", "a"))

39
[1] 1 1 NA

Predict the output of the following:
c(1, FALSE)
C(Ilall’ l)
c(TRUE, 1L)

Why is 1 == "1" true? Why is -1 < FALSE true? Why is
"one" < 2 false?

B Why is the default missing value, NA, a logical vector?
What's special about logical vectors? (Hint: think about

c(FALSE, NA_character_).)
40

Getting and setting attributes

m You can think of attributes as name-value pairs that
attach metadata to an object.

m Individual attributes can be retrieved and modified with

attr (), or retrieved en masse with attributes(), and set
en masse with structure().

a <- 1:3
attr(a, "x") <- "abcdef"
a

[1] 12 3
attr(,"x")
[1] "abcdef"

4

Getting and setting attributes

attr(a, "y") <- 4:6
str(attributes(a))

List of 2
$ x: chr "abcdef"
$ y: int [1:3] 4 5 6

Or equivalently
a <- structure(
153,
x = "abcdef",
y = 4:6
)
str(attributes(a))

List of 2
$ x: chr "abcdef"
$ y: int [1:3] 4 5 6

==

v |l

42

m Names are a type of attribute.
®m You can name a vector in three ways:

When creating it:
x <-c(a=1, b =2, c = 3)

By assigning a character vector to names()
x <= 1:3

names(x) <— C("a"’ llbll’ llcll)

Inline, with setNames():
X <- setNames(1:3, c("a", "b", "c"))

X

43

w 0

m Avoid using attr(x, "names") as it requires more typing
and is less readable than names (x).

= You can remove names from a vector by using
X <= unname(x) Or names(x) <- NULL.

44

m Adding a dim attribute to a vector allows it to behave like
a 2-dimensional matrix or a multi-dimensional array.

m You can create matrices and arrays with matrix() and
array(), or by using the assignment form of dim():

Two scalar arguments specify row and column sizes
X <= matrix(1:6, nrow = 2, ncol = 3)
X

[,1] [,2] [,3]

[1,] 1 3 5

[2,1] 2 4 6 .

One vector argument to describe all dimensions
y <= array(l:12, c(2, 3, 2))

y
J b l

[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
b J 2

46

You can also modify an object in place by setting dim()
z <- 1:6

dim(z) <- c(3, 2)

z

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

47

What does dim() return when applied to a 1-dimensional
vector?

Fl When might you use NROW() or NCOL()?

Bl How would you describe the following three objects?
What makes them different from 1:5?

x1l <- array(l:5, c(1, 1, 5))
x2 <- array(l:5, c(1, 5, 1))
x3 <= array(l:5, c(5, 1, 1))

48

S3 atomic vectors

m class IS a vector attribute. Vector

m It turns object into S3 object. T

9 Atomic
m Four important S3 vectors:

» factor vectors. T |
» Date vectors with day resolution. Numeric
» POSIXct vectors for date-times. f \

» difftime vectors for durations. Logical Integer Double Character

forX

factor POSIXct Date

49

m A vector that can contain only predefined values.

m Used to store categorical data.

m Built on top of an integer vector with two attributes: a
class, “factor” and levels, which defines the set of
allowed values.

X <— factor(c(llall’ llbll’ llbll, lla"))

[1] a b b a

Levels: a b
50

typeof (x)

112|211
[1] "integer" -...
attributes(x) class

levels

Slevels
I:l:l llall llbll

Sclass
[1] "factor"

51

sex_char <- c("m", "m", "m")
sex_factor <- factor(sex_char, levels = c("m", "f"))

table(sex_char)

sex_char
m
3

table(sex_factor)

sex_factor
m f
30

52

m Be careful: some functions convert factors to integers!
m ggplot preserves ordering of levels in graphs — useful to
reorder panels or legends.
m Ordered factors are useful when the order of levels is
meaningful.
grade <- ordered(c("b", "b", "a", "c"), levels = c("c", "b", "a"))
grade
[1] b b ac

Levels: ¢ < b < a

58

m Date vectors are built on top of double vectors.
m Class “Date” with no other attributes:

today <- Sys.Date()

typeof (today)

[1] "double"

attributes(today)

Sclass

[1] "Date"
54

The value of the double (which can be seen by stripping the

class), represents the number of days since 1970-01-01 (the
“Unix Epoch”).

date <- as.Date("1970-02-01")
unclass(date)

[1] 31

55

m Base R provides two ways of storing date-time
information, POSIXct, and POSIXIt.

m “POSIX” is short for Portable Operating System Interface

m “ct” stands for calendar time; “lt” for local time

m POSIXct vectors are built on top of double vectors, where
the value represents the number of seconds since
1970-01-01.

now_ct <- as.POSIXct("2018-08-01 22:00", tz = "UTC")
now_ct

[1] "2018-08-01 22:00:00 UTC" 2L

The tzone attribute controls only how the date-time is
formatted; it does not control the instant of time represented
by the vector. Note that the time is not printed if it is midnight.
structure(now_ct, tzone = "Asia/Tokyo")

[1] "2018-08-02 07:00:00 JST"

structure(now_ct, tzone = "America/New_York")

[1] "2018-08-01 18:00:00 EDT"

structure(now_ct, tzone = "Australia/Lord_Howe")

[1] "2018-08-02 08:30:00 +1030"
57

What sort of object does table() return? What is its type?
What attributes does it have? How does the
dimensionality change as you tabulate more variables?

What happens to a factor when you modify its levels?

fl1 <- factor(letters)
levels(fl) <- rev(levels(fl))

What does this code do? How do f2 and f3 differ from f1?

f2 <- rev(factor(letters))
f3 <- factor(letters, levels = rev(letters))

58

m More complex than atomic vectors
m Elements are references to objects of any type

11 <- list(

1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9)
)
typeof(11)

[[zT2]3]f[=" m TRUE [FALSE | TRUE MZ43|5A9||

[1] "list"

str(11)

List of 4

$: dint [1:3] 1 2 3

$: chr "a"

$: logi [1:3] TRUE FALSE TRUE
$: num [1:2] 2.3 5.9

59

m Lists can be recursive: a list can contain other lists.

13 <- Tlist(list(list(1)))
str(13)

List of 1
S :List of 1

.$:List of 1
.$ ¢ num 1 1

60

m c() will combine several lists into one.

14 <- list(list(1l, 2), c(3, 4))
15 <- c(list(1l, 2), c(3, 4))

str(l4)

List of 2

$:List of 2
.8 num 1
.S num 2

$: num [1:2] 3 4

str(15)

List of 4
$ ¢ num 1
$: num 2

$: num 3

S

num 4

61

Testing and coercion

list(1:3)

[[11]
[11 123

as.list(1:3)

[[111]
[1] 1

[r211
[1] 2

[[311
[1] 3

m You can turn a list into an atomic vector with unlist().
62

Data frames and tibbles Vector

f

m Most important S3 vectors built on lists: List
data frames and tibbles. /' \
dfl <- data.frame(x = 1:3, y = letters[1:3]) data.frame tibble
typeof (dfl)
[1] "list" 1["a"
. 2 | "b”
attributes(dfl)
3 | "
Snames y
Ly —
$class a

[1] "data.frame"

npn row. names
[1] 12 3 63

wlIN]| -

Data frames and tibbles

m A data frame has a constraint: the length of each of its
vectors must be the same.

m A data frame has rownames() and colnames(). The
names () of a data frame are the column names.

m A data frame has nrow() rows and ncol() columns. The
length() of a data frame gives the number of columns.

64

Tibbles

m Modern reimagining of the data frame.
m tibbles are “lazy and surly”: they do less and complain more.

library(tibble)
df2 <- tibble(x = 1:3, y = letters[1:3])
typeof (df2)

[1] "list"
attributes (df2)

Sclass
[1] "tbl_df" il "data.frame"

Srow.names
[1] 12 3

names
%l] nyn uyu 65

Creating data frames and tibbles

names (data.frame("1" = 1))

[l] lleH

names (tibble(1" = 1))

[l:l lllll

66

Creating data frames and tibbles

data.frame(x = 1:4, y = 1:2)

A W N
A W DN R X
N RN R

tibble(x = 1:4, y = 1:2)

Error in “tibble() :
! Tibble columns must have compatible sizes.
* Size 4: Existing data.

* Size 2: Column “y~.
i Only values of size one are recycled.

67

Creating data frames and tibbles

tibble(
X =1:3,
y = x * 2,
z =5

)

A tibble: 3 x 3

X y z

<int> <dbl> <dbl>
1 1 2 5
2 2 4 5
3 3 6 5

68

Row names

Data frames allow you to label each row with a name, a
character vector containing only unique values:

df3 <- data.frame(
age = c(35, 27, 18),
hair = c("blond", "brown", "black"),
row.names = c("Bob", "Susan'", "Sam")

)
df3

age hair
Bob 35 blond
Susan 27 brown
Sam 18 black

69

Row names

m tibbles do not support row names
m convert row names into a regular column with either
rownames_to_column(), Or the rownames argument:

as_tibble(df3, rownames = "name")

A tibble: 3 x 3

name age hair
<chr> <dbl> <chr>
1 Bob 35 blond
2 Susan 27 brown

3 Sam 18 black

70

dplyr::starwars

A tibble: 87 x 14
name height
<chr> <int>

1 Luke Skyw~ 172
2 C-3PO 167
3 R2-D2 96
4 Darth Vad~ 202
5 Leia Orga~ 150
6 Owen Lars 178
7 Beru Whit~ 165
8 R5-D4 97
9 Biggs Dar~ 183
10 Obi-Wan K~ 182

1 77 more rows
1 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
films <list>, vehicles <list>, starships <list>

#

mass
<db1>
7
75
32
136
49
120
75
32
84
7

hair_color skin_color eye_color birth

<chr> <chr>
blond fair

<NA> go'ld

<NA> white, bl~
none white
brown light
brown, gr~ light
brown light

<NA> white, red
black light

auburn, w~ fair

<chr>
blue
yellow
red
yellow
brown
blue
blue
red
brown
blue-gray

19

112

33

41.

19
52
47
NA
24
57

_year sex
<dbl> <chr>

male
none
none
male
fema~
male
fema~
none
male
male

7

m Tibbles only show first 10 rows and all columns that fit on
screen. Additional columns shown at bottom.

m Each column labelled with its type, abbreviated to 3-4
letters.

m Wide columns truncated.

72

List columns

df <- data.frame(x = 1:3) X y
df$y <- list(1:2, 1:3, 1:4)
1 1]2
data. frame(
x =1:3,
y = I(list(1:2, 1:3, 1:4)) 2 1 2 3
)
3 112]|3|4
X y
11 1, 2
22 1, 2, 3
331, 2,3, 4
tibble(
x = 1:3,

y = list(1:2, 1:3, 1:4)
) 73

Matrix and data frame columns

X y z
dfm <- tibble(a b
x = 1:3 * 10,
y = matrix(1:9, nrow = 3), 1 Lle
z = data.frame(a = 3:1, b = letters[1:3]) 20 25| 8
) 30 |[[3]6]0
str(dfm)

tibble [3 x 3] (S3: tbl_df/tbl/data.frame)
$ x: num [1:3] 10 20 30
$ y: int [1:3, 1:3] 123 4567 89
$ z:'data.frame': 3 obs. of 2 variables:
..$ a: int [1:3] 3 2 1
..$ b: chr [1:3] "a" "b" "c" %

Can you have a data frame with zero rows? What about
zero columns?

What happens if you attempt to set rownames that are
not unique?

If df is a data frame, what can you say about t(df), and
t (t(df))? Perform some experiments, making sure to try
different column types.

What does as.matrix () do when applied to a data frame
with columns of different types? How does it differ from
data.matrix()? 75

NULL

length (NULL)

[1] ©

You can test for NULLS with is.null():

x <= NULL
x == NULL

logical(0)

is.null(x)

[1] TRUE

76

	Introduction to R
	Names and values
	Vectors

