
1

ETC4500/ETC5450
Advanced R programming

Week 1: Foundations of R programming

Outline

1 Scalars and vectors

2 Lists and data frames

3 Subsetting

4 Functions

5 Environments

6 Conditions

2

Introduction

Expectations
You know R and RStudio
You have a basic understanding of programming (for
loops, if statements, functions)
You can use Git and GitHub (https://happygitwithr.com)

Unit resources
Everything on https://arp.numbat.space
Assignments submitted on Github Classroom
Discussion on Ed

3

GitHub

Use your monash edu address.
Apply to GitHub Global Campus as a student
(https://github.com/education/students).
Gives you free access to private repos and GitHub Copilot.
Add GitHub Copilot to RStudio settings.

4

https://github.com/education/students

R history

S (1976, Chambers, Becker and Wilks; Bell Labs, USA)
S-PLUS (1988, Doug Martin; Uni of Washington, USA)
R (1993, Ihaka and Gentleman; Uni of Auckland, NZ)

R influenced by
Lisp (functional programming, environments, dynamic
typing)
Scheme (functional programming, lexical scoping)
S and S-PLUS (syntax)

5

R history

S (1976, Chambers, Becker and Wilks; Bell Labs, USA)
S-PLUS (1988, Doug Martin; Uni of Washington, USA)
R (1993, Ihaka and Gentleman; Uni of Auckland, NZ)

R influenced by
Lisp (functional programming, environments, dynamic
typing)
Scheme (functional programming, lexical scoping)
S and S-PLUS (syntax)

5

Why R?

Free, open source, and on every major platform.
A diverse and welcoming community
A massive set of packages, often cutting-edge.
Powerful communication tools (Shiny, Rmarkdown, quarto)
RStudio and Positron IDEs
Deep-seated language support for data analysis.
A strong foundation of functional programming.
Posit
Easy connection to high-performance programming
languages like C, Fortran, and C++.

6

R challenges

R users are not usually programmers. Most R code by
ordinary users is not very elegant, fast, or easy to
understand.
R users more focused on results than good software
practices.
R packages are inconsistent in design.
R can be slow.

7

Outline

1 Scalars and vectors

2 Lists and data frames

3 Subsetting

4 Functions

5 Environments

6 Conditions

8

Scalars

Logicals: TRUE or FALSE, or abbreviated (T or F).

Doubles: decimal (0.1234), scientific (1.23e4), or
hexadecimal (0xcafe). Special values: Inf, -Inf, and NaN
(not a number).

Integers: 1234L, 1e4L, or 0xcafeL. Can not contain
fractional values.

Strings: "hi" or 'bye'. Special characters are escaped
with \.

9

Making longer vectors with c()

Use c() to create vectors.
lgl_var <- c(TRUE, FALSE)
int_var <- c(1L, 6L, 10L)
dbl_var <- c(1, 2.5, 4.5)
chr_var <- c("these are", "some strings")

When the inputs are atomic vectors,
c() always flattens.
c(c(1, 2), c(3, 4))

[1] 1 2 3 4

10

Atomic vectors

Four primary types of atomic vectors: logical, double,
integer, and character (which contains strings).
Two rare types: complex, raw.
Collectively integer and double vectors are known as
numeric vectors
NULL is like a zero length vector
Scalars are just vectors of length 1
Every vector can also have attributes: a named list of
arbitrary metadata.
The dimension attribute turns vectors into matrices and
arrays.
The class attribute powers the S3 object system.

11

Types and length

You can determine the type of a vector with typeof() and its length
with length().
typeof(lgl_var)

[1] "logical"
typeof(int_var)

[1] "integer"
typeof(dbl_var)

[1] "double"
typeof(chr_var)

[1] "character"

12

Missing values

Most computations involving a missing value will return
another missing value.
NA > 5

[1] NA
10 * NA

[1] NA
!NA

[1] NA

13

Missing values

Exceptions:
NA ˆ 0

[1] 1
NA | TRUE

[1] TRUE
NA & FALSE

[1] FALSE

14

Missing values

Use is.na() to check for missingness
x <- c(NA, 5, NA, 10)
x == NA

[1] NA NA NA NA
is.na(x)

[1] TRUE FALSE TRUE FALSE

There are actually four missing values: NA (logical), NA_integer_
(integer), NA_real_ (double), and NA_character_ (character).

15

Coercion
For atomic vectors, all elements must be the same type.
When you combine different types they are coerced in a fixed
order: logical� integer� double� character.

str(c("a", 1))

chr [1:2] "a" "1"
x <- c(FALSE, FALSE, TRUE)
as.numeric(x)

[1] 0 0 1
sum(x)

[1] 1
as.integer(c("1", "1.5", "a"))

[1] 1 1 NA
16

Exercises

1 Predict the output of the following:
c(1, FALSE)
c("a", 1)
c(TRUE, 1L)

2 Why is 1 == "1" true? Why is -1 < FALSE true? Why is
"one" < 2 false?

3 Why is the default missing value, NA, a logical vector?
What’s special about logical vectors? (Hint: think about
c(FALSE, NA_character_).)

17

Getting and setting attributes

You can think of attributes as name-value pairs that
attach metadata to an object.
Individual attributes can be retrieved and modified with
attr(), or retrieved en masse with attributes(), and set
en masse with structure().

a <- 1:3
attr(a, "x") <- "abcdef"
a

[1] 1 2 3
attr(,"x")
[1] "abcdef"

18

Getting and setting attributes
attr(a, "y") <- 4:6
str(attributes(a))

List of 2
$ x: chr "abcdef"
$ y: int [1:3] 4 5 6

Or equivalently
a <- structure(
1:3,
x = "abcdef",
y = 4:6

)
str(attributes(a))

List of 2
$ x: chr "abcdef"
$ y: int [1:3] 4 5 6

19

Names

Names are a type of attribute.
You can name a vector in three ways:

When creating it:
x <- c(a = 1, b = 2, c = 3)

By assigning a character vector to names()
x <- 1:3
names(x) <- c("a", "b", "c")

Inline, with setNames():
x <- setNames(1:3, c("a", "b", "c"))

x

a b c
1 2 3

20

Names

Avoid using attr(x, "names") as it requires more typing
and is less readable than names(x).
You can remove names from a vector by using
x <- unname(x) or names(x) <- NULL.

21

Dimensions

Adding a dim attribute to a vector allows it to behave like
a 2-dimensional matrix or a multi-dimensional array.
You can create matrices and arrays with matrix() and
array(), or by using the assignment form of dim():

Two scalar arguments specify row and column sizes
x <- matrix(1:6, nrow = 2, ncol = 3)
x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

22

Dimensions
One vector argument to describe all dimensions
y <- array(1:12, c(2, 3, 2))
y

, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

23

Dimensions
You can also modify an object in place by setting dim()
z <- 1:6
dim(z) <- c(3, 2)
z

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

24

Exercises

4 What does dim() return when applied to a 1-dimensional
vector?

5 When might you use NROW() or NCOL()?
6 How would you describe the following three objects?

What makes them different from 1:5?
x1 <- array(1:5, c(1, 1, 5))
x2 <- array(1:5, c(1, 5, 1))
x3 <- array(1:5, c(5, 1, 1))

25

S3 atomic vectors

class is a vector attribute.

It turns object into S3 object.

Four important S3 vectors:
▶ factor vectors.
▶ Date vectors with day resolution.
▶ POSIXct vectors for date-times.
▶ difftime vectors for durations.

26

Factors

A vector that can contain only predefined values.
Used to store categorical data.
Built on top of an integer vector with two attributes: a
class, “factor”, and levels, which defines the set of
allowed values.

x <- factor(c("a", "b", "b", "a"))
x

[1] a b b a
Levels: a b

27

Factors
typeof(x)

[1] "integer"
attributes(x)

$levels
[1] "a" "b"

$class
[1] "factor"

28

Factors
sex_char <- c("m", "m", "m")
sex_factor <- factor(sex_char, levels = c("m", "f"))

table(sex_char)

sex_char
m
3
table(sex_factor)

sex_factor
m f
3 0

29

Factors

Be careful: some functions convert factors to integers!
ggplot preserves ordering of levels in graphs – useful to
reorder panels or legends.
Ordered factors are useful when the order of levels is
meaningful.

grade <- ordered(c("b", "b", "a", "c"), levels = c("c", "b", "a"))
grade

[1] b b a c
Levels: c < b < a

30

Dates

Date vectors are built on top of double vectors.
Class “Date” with no other attributes:

today <- Sys.Date()

typeof(today)

[1] "double"
attributes(today)

$class
[1] "Date"

31

Dates

The value of the double (which can be seen by stripping the
class), represents the number of days since 1970-01-01 (the
“Unix Epoch”).
date <- as.Date("1970-02-01")
unclass(date)

[1] 31

32

Date-times

Base R provides two ways of storing date-time
information, POSIXct, and POSIXlt.
“POSIX” is short for Portable Operating System Interface
“ct” stands for calendar time; “lt” for local time
POSIXct vectors are built on top of double vectors, where
the value represents the number of seconds since
1970-01-01.

now_ct <- as.POSIXct("2018-08-01 22:00", tz = "UTC")
now_ct

[1] "2018-08-01 22:00:00 UTC"
typeof(now_ct)

[1] "double"
attributes(now_ct)

$class
[1] "POSIXct" "POSIXt"

$tzone
[1] "UTC"

33

Date-times

The tzone attribute controls only how the date-time is
formatted; it does not control the instant of time represented
by the vector. Note that the time is not printed if it is midnight.
structure(now_ct, tzone = "Asia/Tokyo")

[1] "2018-08-02 07:00:00 JST"
structure(now_ct, tzone = "America/New_York")

[1] "2018-08-01 18:00:00 EDT"
structure(now_ct, tzone = "Australia/Lord_Howe")

[1] "2018-08-02 08:30:00 +1030"

34

Exercises

7 What sort of object does table() return? What is its type?
What attributes does it have? How does the
dimensionality change as you tabulate more variables?

8 What happens to a factor when you modify its levels?
f1 <- factor(letters)
levels(f1) <- rev(levels(f1))

9 What does this code do? How do f2 and f3 differ from f1?
f2 <- rev(factor(letters))
f3 <- factor(letters, levels = rev(letters))

35

Outline

1 Scalars and vectors

2 Lists and data frames

3 Subsetting

4 Functions

5 Environments

6 Conditions

36

Lists

More complex than atomic vectors
Elements are references to objects of any type

l1 <- list(
1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9)

)
typeof(l1)

[1] "list"
str(l1)

List of 4
$: int [1:3] 1 2 3
$: chr "a"
$: logi [1:3] TRUE FALSE TRUE
$: num [1:2] 2.3 5.9

37

Lists

Lists can be recursive: a list can contain other lists.
l3 <- list(list(list(1)))
str(l3)

List of 1
$:List of 1
..$:List of 1
.. ..$: num 1

38

Lists

c() will combine several lists into one.
l4 <- list(list(1, 2), c(3, 4))
l5 <- c(list(1, 2), c(3, 4))
str(l4)

List of 2
$:List of 2
..$: num 1
..$: num 2

$: num [1:2] 3 4
str(l5)

List of 4
$: num 1
$: num 2
$: num 3
$: num 4 39

Testing and coercion
list(1:3)

[[1]]
[1] 1 2 3
as.list(1:3)

[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

You can turn a list into an atomic vector with unlist().

40

Data frames and tibbles

Most important S3 vectors built on lists:
data frames and tibbles.

df1 <- data.frame(x = 1:3, y = letters[1:3])
typeof(df1)

[1] "list"
attributes(df1)

$names
[1] "x" "y"

$class
[1] "data.frame"

$row.names
[1] 1 2 3

41

Data frames and tibbles

A data frame has a constraint: the length of each of its
vectors must be the same.
A data frame has rownames() and colnames(). The
names() of a data frame are the column names.
A data frame has nrow() rows and ncol() columns. The
length() of a data frame gives the number of columns.

42

Tibbles

Modern reimagining of the data frame.
tibbles are “lazy and surly”: they do less and complain more.

library(tibble)
df2 <- tibble(x = 1:3, y = letters[1:3])
typeof(df2)

[1] "list"
attributes(df2)

$class
[1] "tbl_df" "tbl" "data.frame"

$row.names
[1] 1 2 3

$names
[1] "x" "y" 43

Creating data frames and tibbles
names(data.frame(`1` = 1))

[1] "X1"
names(tibble(`1` = 1))

[1] "1"

44

Creating data frames and tibbles
data.frame(x = 1:4, y = 1:2)

x y
1 1 1
2 2 2
3 3 1
4 4 2
tibble(x = 1:4, y = 1:2)

Error in `tibble()`:
! Tibble columns must have compatible sizes.
* Size 4: Existing data.
* Size 2: Column `y`.
i Only values of size one are recycled.

45

Creating data frames and tibbles
tibble(
x = 1:3,
y = x * 2,
z = 5

)

A tibble: 3 x 3
x y z

<int> <dbl> <dbl>
1 1 2 5
2 2 4 5
3 3 6 5

46

Row names

Data frames allow you to label each row with a name, a
character vector containing only unique values:
df3 <- data.frame(
age = c(35, 27, 18),
hair = c("blond", "brown", "black"),
row.names = c("Bob", "Susan", "Sam")

)
df3

age hair
Bob 35 blond
Susan 27 brown
Sam 18 black

47

Row names

tibbles do not support row names
convert row names into a regular column with either
rownames_to_column(), or the rownames argument:

as_tibble(df3, rownames = "name")

A tibble: 3 x 3
name age hair
<chr> <dbl> <chr>

1 Bob 35 blond
2 Susan 27 brown
3 Sam 18 black

48

Printing
dplyr::starwars

A tibble: 87 x 14
name height mass hair_color skin_color eye_color birth_year sex
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>

1 Luke Skyw~ 172 77 blond fair blue 19 male
2 C-3PO 167 75 <NA> gold yellow 112 none
3 R2-D2 96 32 <NA> white, bl~ red 33 none
4 Darth Vad~ 202 136 none white yellow 41.9 male
5 Leia Orga~ 150 49 brown light brown 19 fema~
6 Owen Lars 178 120 brown, gr~ light blue 52 male
7 Beru Whit~ 165 75 brown light blue 47 fema~
8 R5-D4 97 32 <NA> white, red red NA none
9 Biggs Dar~ 183 84 black light brown 24 male

10 Obi-Wan K~ 182 77 auburn, w~ fair blue-gray 57 male
i 77 more rows
i 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
films <list>, vehicles <list>, starships <list>

49

Printing

Tibbles only show first 10 rows and all columns that fit on
screen. Additional columns shown at bottom.
Each column labelled with its type, abbreviated to 3–4
letters.
Wide columns truncated.

50

List columns
df <- data.frame(x = 1:3)
df$y <- list(1:2, 1:3, 1:4)
df

x y
1 1 1, 2
2 2 1, 2, 3
3 3 1, 2, 3, 4
tibble(
x = 1:3,
y = list(1:2, 1:3, 1:4)

)

A tibble: 3 x 2
x y

<int> <list>
1 1 <int [2]>
2 2 <int [3]>
3 3 <int [4]> 51

Matrix and data frame columns
dfm <- tibble(
x = 1:3 * 10,
y = matrix(1:9, nrow = 3),
z = data.frame(a = 3:1, b = letters[1:3])

)
str(dfm)

tibble [3 x 3] (S3: tbl_df/tbl/data.frame)
$ x: num [1:3] 10 20 30
$ y: int [1:3, 1:3] 1 2 3 4 5 6 7 8 9
$ z:'data.frame': 3 obs. of 2 variables:
..$ a: int [1:3] 3 2 1
..$ b: chr [1:3] "a" "b" "c"

52

Exercises

10 What happens if you attempt to set rownames that are
not unique?

11 If df is a data frame, what can you say about t(df), and
t(t(df))? Perform some experiments, making sure to try
different column types.

12 What does as.matrix() do when applied to a data frame
with columns of different types? How does it differ from
data.matrix()?

53

NULL

length(NULL)

[1] 0

You can test for NULLs with is.null():
x <- NULL
x == NULL

logical(0)
is.null(x)

[1] TRUE

54

Outline

1 Scalars and vectors

2 Lists and data frames

3 Subsetting

4 Functions

5 Environments

6 Conditions

55

Exercises

13 What is the result of subsetting a vector with positive
integers, negative integers, a logical vector, or a character
vector?

14 What’s the difference between [, [[, and $ when applied
to a list?

15 When should you use drop = FALSE?

56

Exercises

16 Fix each of the following common data frame subsetting errors:
mtcars[mtcars$cyl = 4,]
mtcars[-1:4,]
mtcars[mtcars$cyl <= 5]
mtcars[mtcars$cyl == 4 | 6,]

17 Extract the residual degrees of freedom from mod
mod <- lm(mpg ~ wt, data = mtcars)

18 Extract the R squared from the model summary (summary(mod))

57

Exercises

19 How would you randomly permute the columns of a data
frame?

20 How would you select a random sample of m rows from a
data frame? What if the sample had to be contiguous (i.e.,
with an initial row, a final row, and every row in between)?

21 How could you put the columns in a data frame in
alphabetical order?

58

Outline

1 Scalars and vectors

2 Lists and data frames

3 Subsetting

4 Functions

5 Environments

6 Conditions

59

Function fundamentals

Almost all functions can be broken down into three
components: arguments, body, and environment.

▶ The formals(), the list of arguments that control how you call
the function.

▶ The body(), the code inside the function.
▶ The environment(), the data structure that determines how the

function finds the values associated with the names.

Functions are objects and have attributes.

60

Function components
f02 <- function(x, y) {
A comment
x + y

}
formals(f02)

$x

$y
body(f02)

{
x + y

}
environment(f02)

<environment: R_GlobalEnv> 61

Invoking a function
mean(1:10, na.rm = TRUE)

[1] 5.5
mean(, TRUE, x = 1:10)

[1] 5.5
args <- list(1:10, na.rm = TRUE)
do.call(mean, args)

[1] 5.5

62

Function composition
square <- function(x) { xˆ2 }
deviation <- function(x) { x - mean(x) }
x <- runif(100)

Nesting:
sqrt(mean(square(deviation(x))))

[1] 0.292

Intermediate variables:
out <- deviation(x)
out <- square(out)
out <- mean(out)
out <- sqrt(out)
out
[1] 0.292

Pipe:
x |>

deviation() |>
square() |>
mean() |>
sqrt()

[1] 0.292

63

Lexical scoping

Names defined inside a function mask names defined outside
a function.
x <- 10
y <- 20
g02 <- function() {
x <- 1
y <- 2
c(x, y)

}
g02()

[1] 1 2

64

Lexical scoping

Names defined inside a function mask names defined outside
a function.
x <- 2
g03 <- function() {
y <- 1
c(x, y)

}
g03()

[1] 2 1
And this doesn't change the previous value of y
y

[1] 20

65

Lexical scoping

Names defined inside a function mask names defined outside
a function.
x <- 1
g04 <- function() {
y <- 2
i <- function() {
z <- 3
c(x, y, z)

}
i()

}
g04()

[1] 1 2 3

66

Functions versus variables
g07 <- function(x) { x + 1 }
g08 <- function() {
g07 <- function(x) { x + 100 }
g07(10)

}
g08()

[1] 110
g09 <- function(x) { x + 100 }
g10 <- function() {
g09 <- 10
g09(g09)

}
g10()

[1] 110

67

A fresh start

What happens to values between invocations of a function?
g11 <- function() {
if (!exists("a")) {
a <- 1

} else {
a <- a + 1

}
a

}

g11()

[1] 1
g11()

[1] 1
68

Dynamic lookup
g12 <- function() { x + 1 }
x <- 15
g12()

[1] 16
x <- 20
g12()

[1] 21
codetools::findGlobals(g12)

[1] "{" "+" "x"

It is good practice to pass all the inputs to a function as arguments.

69

Dynamic lookup
g12 <- function() { x + 1 }
x <- 15
g12()

[1] 16
x <- 20
g12()

[1] 21
codetools::findGlobals(g12)

[1] "{" "+" "x"

It is good practice to pass all the inputs to a function as arguments.

69

Lazy evaluation

This code doesn’t generate an error because x is never used:
h01 <- function(x) {
10

}
h01(stop("This is an error!"))

[1] 10

70

Promises

Lazy evaluation is powered by a data structure called a promise.
A promise has three components:

An expression, like x + y, which gives rise to the delayed
computation.
An environment where the expression should be evaluated
A value, which is computed and cached the first time a promise
is accessed when the expression is evaluated in the specified
environment.

71

Promises
y <- 10
h02 <- function(x) {
y <- 100
x + 1

}
h02(y)

[1] 11

72

Promises
double <- function(x) {
message("Calculating...")
x * 2

}
h03 <- function(x) {
c(x, x)

}
h03(double(20))

Calculating...

[1] 40 40

Promises are like a quantum state: any attempt to inspect them with
R code will force an immediate evaluation, making the promise
disappear.

73

Promises
double <- function(x) {
message("Calculating...")
x * 2

}
h03 <- function(x) {
c(x, x)

}
h03(double(20))

Calculating...

[1] 40 40

Promises are like a quantum state: any attempt to inspect them with
R code will force an immediate evaluation, making the promise
disappear.

73

Default arguments

Thanks to lazy evaluation, default values can be defined in
terms of other arguments, or even in terms of variables
defined later in the function:
h04 <- function(x = 1, y = x * 2, z = a + b) {
a <- 10
b <- 100
c(x, y, z)

}
h04()

[1] 1 2 110

Not recommended!

74

Default arguments

Thanks to lazy evaluation, default values can be defined in
terms of other arguments, or even in terms of variables
defined later in the function:
h04 <- function(x = 1, y = x * 2, z = a + b) {
a <- 10
b <- 100
c(x, y, z)

}
h04()

[1] 1 2 110

Not recommended!

74

... (dot-dot-dot)

Allows for any number of additional arguments.
You can use ... to pass additional arguments to another
function.
i01 <- function(y, z) {
list(y = y, z = z)

}
i02 <- function(x, ...) {
i01(...)

}
str(i02(x = 1, y = 2, z = 3))

List of 2
$ y: num 2
$ z: num 3

75

... (dot-dot-dot)

list(...) evaluates the arguments and stores them in a list:
i04 <- function(...) {
list(...)

}
str(i04(a = 1, b = 2))

List of 2
$ a: num 1
$ b: num 2

76

... (dot-dot-dot)

Allows you to pass arguments to a function called within your
function, without having to list them all explicitly.

Two downsides:

When you use it to pass arguments to another function, you
have to carefully explain to the user where those arguments go.
A misspelled argument will not raise an error. This makes it easy
for typos to go unnoticed:

sum(1, 2, NA, na_rm = TRUE)

[1] NA

77

... (dot-dot-dot)

Allows you to pass arguments to a function called within your
function, without having to list them all explicitly.

Two downsides:

When you use it to pass arguments to another function, you
have to carefully explain to the user where those arguments go.
A misspelled argument will not raise an error. This makes it easy
for typos to go unnoticed:

sum(1, 2, NA, na_rm = TRUE)

[1] NA

77

Exercises

22 Explain the following results:
sum(1, 2, 3)

[1] 6
mean(1, 2, 3)

[1] 1
sum(1, 2, 3, na.omit = TRUE)

[1] 7
mean(1, 2, 3, na.omit = TRUE)

[1] 1

78

Exiting a function

Most functions exit in one of two ways:

return a value, indicating success
throw an error, indicating failure.

79

Implicit versus explicit returns

Implicit return, where the last evaluated expression is the
return value:
j01 <- function(x) {
if (x < 10) {
0

} else {
10

}
}
j01(5)

[1] 0
j01(15)

[1] 10

80

Implicit versus explicit returns

Explicit return, by calling return():
j02 <- function(x) {
if (x < 10) {
return(0)

} else {
return(10)

}
}
j02(5)

[1] 0
j02(15)

[1] 10

81

Invisible values

Most functions return visibly: calling the function in an
interactive context prints the result.
j03 <- function() { 1 }
j03()

[1] 1

However, you can prevent automatic printing by applying
invisible() to the last value:
j04 <- function() { invisible(1) }
j04()

82

Invisible values

The most common function that returns invisibly is <-:
a <- 2
(a <- 2)

[1] 2

This is what makes it possible to chain assignments:
a <- b <- c <- d <- 2

In general, any function called primarily for a side effect (like
<-, print(), or plot()) should return an invisible value
(typically the value of the first argument).

83

Errors

If a function cannot complete its assigned task, it should
throw an error with stop(), which immediately terminates the
execution of the function.
j05 <- function() {
stop("I'm an error")
return(10)

}
j05()

Error in j05(): I'm an error

84

Function forms

To understand computations in R, two slogans are
helpful:

Everything that exists is an object.
Everything that happens is a function call.

— John Chambers

85

Function forms

prefix: the function name comes before its arguments,
like foofy(a, b, c).
infix: the function name comes in between its arguments,
like x + y.
replacement: functions that replace values by
assignment, like names(df) <- c("a", "b", "c").
special: functions like [[, if, and for.

86

Rewriting to prefix form

Everything can be written in prefix form.
x + y
`+`(x, y)

names(df) <- c("x", "y", "z")
`names<-`(df, c("x", "y", "z"))

for(i in 1:10) print(i)
`for`(i, 1:10, print(i))

87

Don’t be evil!
`(` <- function(e1) {
if (is.numeric(e1) && runif(1) < 0.1) {
e1 + 1

} else {
e1

}
}
replicate(50, (1 + 2))

[1] 3 3 3 3 3 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 4 4 3 3 3 3 3
[36] 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3

88

Prefix form

You can specify arguments in three ways:

By position, like help(mean).
By name, like help(topic = mean).
Using partial matching, like help(top = mean).

89

Exercises

23 Clarify the following list of odd function calls:
x <- sample(replace = TRUE, 20, x = c(1:10, NA))
y <- runif(min = 0, max = 1, 20)
cor(m = "k", y = y, u = "p", x = x)

90

Infix functions

Functions with 2 arguments, and the function name comes
between the arguments:

:, ::, :::, $, @, ˆ, *, /, +, -, >, >=, <, <=, ==, !=, !, &, &&, |, ||, ~,
<-, and <<-.
1 + 2

[1] 3
`+`(1, 2)

[1] 3

91

Infix functions

You can also create your own infix functions that start and end
with %.
`%+%` <- function(a, b) paste0(a, b)
"new " %+% "string"

[1] "new string"

92

Replacement functions

Replacement functions act like they modify their
arguments in place, and have the special name xxx<-.
They must have arguments named x and value, and must
return the modified object.

`second<-` <- function(x, value) {
x[2] <- value
x

}
x <- 1:10
second(x) <- 5L
x

[1] 1 5 3 4 5 6 7 8 9 10

93

Replacement functions
`modify<-` <- function(x, position, value) {
x[position] <- value
x

}
modify(x, 1) <- 10
x

[1] 10 5 3 4 5 6 7 8 9 10

When you write modify(x, 1) <- 10, behind the scenes R
turns it into:
x <- `modify<-`(x, 1, 10)

94

Outline

1 Scalars and vectors

2 Lists and data frames

3 Subsetting

4 Functions

5 Environments

6 Conditions

95

Environment basics

Environments are data structures that power scoping.

An environment is similar to a named list, with four important
exceptions:

Every name must be unique.
The names in an environment are not ordered.
An environment has a parent.
Environments are not copied when modified.

96

Environment basics
library(rlang)
e1 <- env(
a = FALSE,
b = "a",
c = 2.3,
d = 1:3,

)

Special environments
The current environment is the environment in which
code is currently executing.
The global environment is where all interactive
computation takes place. Your “workspace”.

97

Parent environments

Every environment has a
parent.
If a name is not found in
an environment, R looks in
the parent environment.
The ancestors of the
global environment
include every attached
package.

env_parents(e1, last = empty_env())

[[1]] $ <env: global>
[[2]] $ <env: package:rlang>
[[3]] $ <env: package:tibble>
[[4]] $ <env: package:dplyr>
[[5]] $ <env: package:stats>
[[6]] $ <env: package:graphics>
[[7]] $ <env: package:grDevices>
[[8]] $ <env: package:datasets>
[[9]] $ <env: renv:shims>

[[10]] $ <env: package:utils>
[[11]] $ <env: package:methods>
[[12]] $ <env: Autoloads>
[[13]] $ <env: package:base>
[[14]] $ <env: empty>

98

Super assignment

Regular assignment (<-) creates a variable in the current
environment.
Super assignment (<<-) modifies a variable in a parent
environment.
If it can’t find an existing variable, it creates one in the
global environment.

99

Package environments

Every package attached becomes one of the parents of the
global environment (in order of attachment).
search()

[1] ".GlobalEnv" "package:rlang" "package:tibble"
[4] "package:dplyr" "package:stats" "package:graphics"
[7] "package:grDevices" "package:datasets" "renv:shims"

[10] "package:utils" "package:methods" "Autoloads"
[13] "package:base"

Attaching a package changes the parent of the global
environment.
Autoloads uses delayed bindings to save memory by only
loading package objects when needed.

100

Function environments

A function binds the current environment when it is created.
y <- 1
f <- function(x) {
env_print(current_env())
x + y

}
f(2)

<environment: 0x57829de2df70>
Parent: <environment: global>
Bindings:
* x: <lazy>

[1] 3

101

Namespaces

Package environment: how an R user finds a function in an
attached package (only includes exports)
Namespace environment: how a package finds its own objects
(includes non-exports as well)
Each namespace environment has an imports environment
(controlled via NAMESPACE file).

102

Caller environments
f <- function(x) {
g(x = 2)

}
g <- function(x) {
h(x = 3)

}
h <- function(x) {
stop()

}

f(x = 1)
#> Error: in h(x = 3)
traceback()
#> 4: stop() at #3
#> 3: h(x = 3) at #3
#> 2: g(x = 2) at #3
#> 1: f(x = 1)

103

Lazy evaluation
a <- function(x) b(x)
b <- function(x) c(x)
c <- function(x) x
a(f())
#> Error: in h(x = 3)
traceback()
#> 7: stop() at #3
#> 6: h(x = 3) at #3
#> 5: g(x = 2) at #3
#> 4: f() at #1
#> 3: c(x) at #1
#> 2: b(x) at #1
#> 1: a(f())
unused argument (clas

104

Outline

1 Scalars and vectors

2 Lists and data frames

3 Subsetting

4 Functions

5 Environments

6 Conditions

105

Conditions
message("This is what a message looks like")
#> This is what a message looks like

warning("This is what a warning looks like")
#> Warning: This is what a warning looks like

stop("This is what an error looks like")
#> Error in eval(expr, envir, enclos): This is what an error looks like

Ignore messages with suppressMessages().
Ignore warnings with suppressWarnings().
Ignore errors with try().

106

Conditions
message("This is what a message looks like")
#> This is what a message looks like

warning("This is what a warning looks like")
#> Warning: This is what a warning looks like

stop("This is what an error looks like")
#> Error in eval(expr, envir, enclos): This is what an error looks like

Ignore messages with suppressMessages().
Ignore warnings with suppressWarnings().
Ignore errors with try().

106

try()

Allows execution to continue even if an error occurs.
Returns a special object that captures the error.

f1 <- function(x) {
log(x)
10

}
f1("x")
Error in log(x): non-numeric argument to mathematical function

f2 <- function(x) {
try(log(x))
10

}
f2("a")
Error in log(x) : non-numeric argument to mathematical function
[1] 10

107

Handling conditions

Allow you to specify what should happen when a condition occurs.
tryCatch(
error = function(cnd) {
code to run when error is thrown

},
code_to_run_while_handlers_are_active

)
withCallingHandlers(
warning = function(cnd) {
code to run when warning is signalled

},
message = function(cnd) {
code to run when message is signalled

},
code_to_run_while_handlers_are_active

)

108

tryCatch()
f3 <- function(x) {
tryCatch(
error = function(cnd) NA,
log(x)

)
}

f3("x")

[1] NA

109

withCallingHandlers()
f4 <- function(x) {
withCallingHandlers(
warning = function(cnd) cat("How did this happen?\n"),
log(x)

)
}

f4(-1)

How did this happen?

[1] NaN

110

Exercise

24 Explain the results of running the following code
show_condition <- function(code) {
tryCatch(
error = function(cnd) "error",
warning = function(cnd) "warning",
message = function(cnd) "message",
{
code
5

}
)

}
show_condition(stop("!"))
show_condition(10)
show_condition(warning("?!"))

111

Activity

Write a function to take a single integer input and return:

fizz if the number is divisible by 5
buzz if the number is divisible by 7
fizzbuzz if the number is divisible by both 5 and 7
the number otherwise

Your function should contain a stop() if the input is not an
integer.

112

Assignment 1

A supermarket has p checkouts and customers must choose one, forming a
queue if it is already occupied. Customers always choose the shortest
queue. The time between each new customer arriving at the checkouts has
an exponential distribution with mean µ minutes. The time it takes for a
checkout operator to process a customer has an independent exponential
distribution with mean λ minutes.

Write an R function to simulate the supermarket queues at each checkout,
taking the arguments mu, lambda, p and n, and returning the total number
of customers waiting to be served, n minutes after the supermarket opens.
The argument p should have default value 3, while n should have default
value 720 (the number of minutes in a 12 hour day). The other arguments
should have no default values. Your function should be named
remaining_customers.

Your code should be as efficient as possible. Arguments should be checked
for range and class.

113

	Scalars and vectors
	Lists and data frames
	Subsetting
	Functions
	Environments
	Conditions

