
1

ETC4500/ETC5450
Advanced R programming

Week 1: Foundations of R programming

arp.numbat.space

https://arp.numbat.space

Outline

1 Introduction to R

2 Names and values

3 Vectors

2

First things first

Expectations

You know R and RStudio
You have a basic understanding of programming (for
loops, if statements, functions)
You can use Git and GitHub (https://happygitwithr.com)

Unit resources

Everything on https://arp.numbat.space
Assignments submitted on Github Classroom
Discussion on Ed 3

GitHub

Use your monash edu address.
Apply to GitHub Global Campus as a student
(https://education.github.com).
Gives you free access to private repos and GitHub Copilot.
Add GitHub Copilot to RStudio settings.

4

Outline

1 Introduction to R

2 Names and values

3 Vectors

5

R history

S (1976, Chambers, Becker and Wilks; Bell Labs, USA)
S-PLUS (1988, Doug Martin; Uni of Washington, USA)
R (1993, Ihaka and Gentleman; Uni of Auckland, NZ)

R influenced by

Lisp (functional programming, environments, dynamic
typing)
Scheme (functional programming, lexical scoping)
S and S-PLUS (syntax)

6

R history

S (1976, Chambers, Becker and Wilks; Bell Labs, USA)
S-PLUS (1988, Doug Martin; Uni of Washington, USA)
R (1993, Ihaka and Gentleman; Uni of Auckland, NZ)

R influenced by

Lisp (functional programming, environments, dynamic
typing)
Scheme (functional programming, lexical scoping)
S and S-PLUS (syntax)

6

Why R?

Free, open source, and on every major platform.
A diverse and welcoming community
A massive set of packages, often cutting-edge.
Powerful communication tools (Shiny, Rmarkdown, quarto)
RStudio IDE
Deep-seated language support for data analysis.
A strong foundation of functional programming.
Posit
Easy connection to high-performance programming
languages like C, Fortran, and C++. 7

R challenges

R users are not usually programmers. Most R code by
ordinary users is not very elegant, fast, or easy to
understand.
R users more focused on results than good software
practices.
R packages are inconsistent in design.
R can be slow.

8

Outline

1 Introduction to R

2 Names and values

3 Vectors

9

Exercises

1 Given the following data frame, how do I create a new column
called “3” that contains the sum of 1 and 2? You may only use $,
not [[. What makes 1, 2, and 3 challenging as variable names?
df <- data.frame(runif(3), runif(3))
names(df) <- c(1, 2)

2 In the following code, how much memory does y occupy?
x <- runif(1e6)
y <- list(x, x, x)

3 On which line does a get copied in the following example?
a <- c(1, 5, 3, 2)
b <- a
b[[1]] <- 10 10

Binding basics

x <- c(1, 2, 3)

Creates an object, a vector of values, c(1, 2, 3).
Binds that object to a name, x.
A name is a reference (or pointer) to a value.

y <- x

Binds the same object to a new name, y.

11

Binding basics

x <- c(1, 2, 3)

Creates an object, a vector of values, c(1, 2, 3).
Binds that object to a name, x.
A name is a reference (or pointer) to a value.

y <- x

Binds the same object to a new name, y.

11

Binding basics

library(lobstr)
obj_addr(x)

[1] "0x55baa524b958"
obj_addr(y)

[1] "0x55baa524b958"

These identifiers are long, and change every time you restart R.

12

Syntactic names

A syntactic name:

must consist of letters, digits, . and _
can’t begin with _, or a digit, or a . followed by a digit
can’t be a reserved word like TRUE, NULL, if, and function

_abc <- 1
#> Error: unexpected input in "_"

if <- 10
#> Error: unexpected assignment in "if <-"

It’s possible to override these rules using backticks.
`_abc` <- 1
`_abc`

[1] 1

13

Syntactic names

A syntactic name:

must consist of letters, digits, . and _
can’t begin with _, or a digit, or a . followed by a digit
can’t be a reserved word like TRUE, NULL, if, and function

_abc <- 1
#> Error: unexpected input in "_"

if <- 10
#> Error: unexpected assignment in "if <-"

It’s possible to override these rules using backticks.
`_abc` <- 1
`_abc`

[1] 1

13

Copy-on-modify

Consider the following code. It binds x and y to the same
underlying value, then modifies y.
x <- c(1, 2, 3)
y <- x

y[[3]] <- 4
x

[1] 1 2 3

14

Copy-on-modify

Consider the following code. It binds x and y to the same
underlying value, then modifies y.
x <- c(1, 2, 3)
y <- x

y[[3]] <- 4
x

[1] 1 2 3
14

tracemem()

You can see when an object gets copied using tracemem().
x <- c(1, 2, 3)
tracemem(x)

[1] "<0x55baa5128208>"

y <- x
y[[3]] <- 4L

tracemem[0x55baa5128208 -> 0x55baa1a59798]: eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main

y[[3]] <- 5L

tracemem[0x55baa1a59798 -> 0x55baa4fa0578]: eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main

untracemem(x)

15

Modify-in-place

If an object has a single name bound to it, R will modify it in
place:
v <- c(1, 2, 3)

v[[3]] <- 4

16

Function calls

The same rules for copying also apply to function calls.
f <- function(a) {
a

}

x <- c(1, 2, 3)
tracemem(x)

[1] "<0x55baa4f8ee68>"

z <- f(x)
there's no copy here!
untracemem(x)

17

Lists

Lists store references to their elements,
not the elements themselves.
l1 <- list(1, 2, 3)

l2 <- l1

l2[[3]] <- 4

18

Lists

Lists store references to their elements,
not the elements themselves.
l1 <- list(1, 2, 3)

l2 <- l1

l2[[3]] <- 4

18

Lists

Lists store references to their elements,
not the elements themselves.
l1 <- list(1, 2, 3)

l2 <- l1

l2[[3]] <- 4
18

Data frames

Data frames are lists of vectors.
d1 <- data.frame(x = c(1, 5, 6), y = c(2, 4, 3))

Modifying a column:
d2 <- d1
d2[, 2] <- d2[, 2] * 2

19

Data frames

Data frames are lists of vectors.
d1 <- data.frame(x = c(1, 5, 6), y = c(2, 4, 3))

Modifying a column:
d2 <- d1
d2[, 2] <- d2[, 2] * 2

19

Data frames

Data frames are lists of vectors.
d1 <- data.frame(x = c(1, 5, 6), y = c(2, 4, 3))

Modifying a row:
d3 <- d1
d3[1,] <- d3[1,] * 3

20

Character vectors

x <- c("a", "a", "abc", "d")

Not quite!
R actually uses a global string pool where each element is a
pointer to a string in the pool

21

Object size

lobstr::obj_size() gives the size of an object in memory.
obj_size(ggplot2::diamonds)

3.46 MB

banana <- "bananas bananas bananas"
obj_size(banana)

136 B

obj_size(rep(banana, 100))

928 B

22

Object size

x <- runif(1e6)
obj_size(x)

8.00 MB
y <- list(x, x, x)
obj_size(y)

8.00 MB
obj_size(x, y)

8.00 MB

23

ALTREP

obj_size(1:3)

680 B
obj_size(1:1e6)

680 B
obj_size(c(1:1e6, 10))

8.00 MB
obj_size(2 * (1:1e6))

8.00 MB 24

For loops

Loops have a reputation for being slow, but often that is
caused by iterations creating copies.
x <- data.frame(matrix(runif(3 * 1e4), ncol = 3))
medians <- vapply(x, median, numeric(1))
tracemem(x)
for (i in seq_along(medians)) {
x[[i]] <- x[[i]] - medians[[i]]

}

tracemem[0x55baa51f7048 -> 0x55baa5180ca8]: eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main
tracemem[0x55baa5180ca8 -> 0x55baa5180d98]: [[<-.data.frame [[<- eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main
tracemem[0x55baa5180d98 -> 0x55baa5180e38]: eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main
tracemem[0x55baa5180e38 -> 0x55baa5181018]: [[<-.data.frame [[<- eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main
tracemem[0x55baa5181018 -> 0x55baa5181108]: eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main
tracemem[0x55baa5181108 -> 0x55baa51811f8]: [[<-.data.frame [[<- eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main

Each iteration copies the data frame two times! 25

For loops

The same problem but with a list.
y <- as.list(x)
tracemem(y)
for (i in 1:3) {
y[[i]] <- y[[i]] - medians[[i]]

}

tracemem[0x55baa516e558 -> 0x55baa51443b8]: eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group withCallingHandlers withCallingHandlers <Anonymous> process_file <Anonymous> <Anonymous> execute .main

Only one copy created

26

Don’t allocate memory in a for loop

Allocating memory within the loop
system.time(
{

x <- NULL
for(i in seq(1e5)) {
x <- c(x, i)

}
}
)

user system elapsed
6.358 0.008 6.366

Allocating memory before the loop
system.time(
{

x <- numeric(1e5)
for(i in seq(1e5)) {

x[i] <- i
}

}
)

user system elapsed
0.006 0.000 0.006

27

Unbinding and the garbage collector

x <- 1:3

x <- 2:4

rm(x)

28

Unbinding and the garbage collector

x <- 1:3

x <- 2:4

rm(x)

28

Unbinding and the garbage collector

x <- 1:3

x <- 2:4

rm(x)

28

Garbage collection

Garbage collection (GC) frees up memory by deleting R
objects that are no longer used, and by requesting more
memory from the operating system if needed.
R traces every object that’s reachable from the global
environment (recursively).
GC runs automatically whenever R needs more memory to
create a new object.
You can force garbage collection by calling gc(). But it’s
never necessary.

29

Outline

1 Introduction to R

2 Names and values

3 Vectors

30

Vectors

Vectors come in two flavours: atomic vectors and lists
For atomic vectors, all elements must have same type
For lists, elements can have different types
NULL is like a generic zero length vector
Scalars are just vectors of length 1
Every vector can also have attributes: a named list of
arbitrary metadata.
The dimension attribute turns vectors into matrices and
arrays.
The class attribute powers the S3 object system. 31

Atomic vectors

Four primary types of atomic vectors: logical, integer,
double, and character (which contains strings).

Collectively integer and double vectors are known as
numeric vectors

Two rare types:
▶ complex
▶ raw.

32

Scalars

Logicals: TRUE or FALSE, or abbreviated (T or F).

Doubles: decimal (0.1234), scientific (1.23e4), or
hexadecimal (0xcafe). Special values: Inf, -Inf, and NaN
(not a number).

Integers: 1234L, 1e4L, or 0xcafeL. Can not contain
fractional values.

Strings: "hi" or 'bye'. Special characters are escaped
with \.

33

Making longer vectors with c()

Use c() to create longer vectors from shorter ones.
lgl_var <- c(TRUE, FALSE)
int_var <- c(1L, 6L, 10L)
dbl_var <- c(1, 2.5, 4.5)
chr_var <- c("these are", "some strings")

When the inputs are atomic vectors,
c() always flattens.
c(c(1, 2), c(3, 4))

[1] 1 2 3 4
34

Types and length

You can determine the type of a vector with typeof() and its length
with length().
typeof(lgl_var)

[1] "logical"

typeof(int_var)

[1] "integer"

typeof(dbl_var)

[1] "double"

typeof(chr_var)

[1] "character" 35

Missing values

Most computations involving a missing value will return
another missing value.
NA > 5

[1] NA

10 * NA

[1] NA

!NA

[1] NA

36

Missing values

Exceptions:
NA ˆ 0

[1] 1

NA | TRUE

[1] TRUE

NA & FALSE

[1] FALSE

37

Missing values

Use is.na() to check for missingness
x <- c(NA, 5, NA, 10)
x == NA

[1] NA NA NA NA

is.na(x)

[1] TRUE FALSE TRUE FALSE

There are actually four missing values: NA (logical), NA_integer_
(integer), NA_real_ (double), and NA_character_ (character).

38

Coercion

For atomic vectors, all elements must be the same type.
When you combine different types they are coerced in a fixed
order: logical → integer → double → character.

str(c("a", 1))

chr [1:2] "a" "1"

x <- c(FALSE, FALSE, TRUE)
as.numeric(x)

[1] 0 0 1

sum(x)

[1] 1

as.integer(c("1", "1.5", "a"))

[1] 1 1 NA
39

Exercises

4 Predict the output of the following:
c(1, FALSE)
c("a", 1)
c(TRUE, 1L)

5 Why is 1 == "1" true? Why is -1 < FALSE true? Why is
"one" < 2 false?

6 Why is the default missing value, NA, a logical vector?
What’s special about logical vectors? (Hint: think about
c(FALSE, NA_character_).)

40

Getting and setting attributes

You can think of attributes as name-value pairs that
attach metadata to an object.
Individual attributes can be retrieved and modified with
attr(), or retrieved en masse with attributes(), and set
en masse with structure().

a <- 1:3
attr(a, "x") <- "abcdef"
a

[1] 1 2 3
attr(,"x")
[1] "abcdef"

41

Getting and setting attributes

attr(a, "y") <- 4:6
str(attributes(a))

List of 2
$ x: chr "abcdef"
$ y: int [1:3] 4 5 6

Or equivalently
a <- structure(
1:3,
x = "abcdef",
y = 4:6

)
str(attributes(a))

List of 2
$ x: chr "abcdef"
$ y: int [1:3] 4 5 6

42

Names

Names are a type of attribute.
You can name a vector in three ways:

When creating it:
x <- c(a = 1, b = 2, c = 3)

By assigning a character vector to names()
x <- 1:3
names(x) <- c("a", "b", "c")

Inline, with setNames():
x <- setNames(1:3, c("a", "b", "c"))

x

a b c
1 2 3

43

Names

Avoid using attr(x, "names") as it requires more typing
and is less readable than names(x).
You can remove names from a vector by using
x <- unname(x) or names(x) <- NULL.

44

Dimensions

Adding a dim attribute to a vector allows it to behave like
a 2-dimensional matrix or a multi-dimensional array.
You can create matrices and arrays with matrix() and
array(), or by using the assignment form of dim():

Two scalar arguments specify row and column sizes
x <- matrix(1:6, nrow = 2, ncol = 3)
x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

45

Dimensions

One vector argument to describe all dimensions
y <- array(1:12, c(2, 3, 2))
y

, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

46

Dimensions

You can also modify an object in place by setting dim()
z <- 1:6
dim(z) <- c(3, 2)
z

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

47

Exercises

7 What does dim() return when applied to a 1-dimensional
vector?

8 When might you use NROW() or NCOL()?
9 How would you describe the following three objects?

What makes them different from 1:5?
x1 <- array(1:5, c(1, 1, 5))
x2 <- array(1:5, c(1, 5, 1))
x3 <- array(1:5, c(5, 1, 1))

48

S3 atomic vectors

class is a vector attribute.

It turns object into S3 object.

Four important S3 vectors:
▶ factor vectors.
▶ Date vectors with day resolution.
▶ POSIXct vectors for date-times.
▶ difftime vectors for durations.

49

Factors

A vector that can contain only predefined values.
Used to store categorical data.
Built on top of an integer vector with two attributes: a
class, “factor”, and levels, which defines the set of
allowed values.

x <- factor(c("a", "b", "b", "a"))
x

[1] a b b a
Levels: a b

50

Factors

typeof(x)

[1] "integer"
attributes(x)

$levels
[1] "a" "b"

$class
[1] "factor"

51

Factors

sex_char <- c("m", "m", "m")
sex_factor <- factor(sex_char, levels = c("m", "f"))

table(sex_char)

sex_char
m
3
table(sex_factor)

sex_factor
m f
3 0

52

Factors

Be careful: some functions convert factors to integers!
ggplot preserves ordering of levels in graphs – useful to
reorder panels or legends.
Ordered factors are useful when the order of levels is
meaningful.

grade <- ordered(c("b", "b", "a", "c"), levels = c("c", "b", "a"))
grade

[1] b b a c
Levels: c < b < a

53

Dates

Date vectors are built on top of double vectors.
Class “Date” with no other attributes:

today <- Sys.Date()

typeof(today)

[1] "double"
attributes(today)

$class
[1] "Date"

54

Dates

The value of the double (which can be seen by stripping the
class), represents the number of days since 1970-01-01 (the
“Unix Epoch”).
date <- as.Date("1970-02-01")
unclass(date)

[1] 31

55

Date-times

Base R provides two ways of storing date-time
information, POSIXct, and POSIXlt.
“POSIX” is short for Portable Operating System Interface
“ct” stands for calendar time; “lt” for local time
POSIXct vectors are built on top of double vectors, where
the value represents the number of seconds since
1970-01-01.

now_ct <- as.POSIXct("2018-08-01 22:00", tz = "UTC")
now_ct

[1] "2018-08-01 22:00:00 UTC"
typeof(now_ct)

[1] "double"
attributes(now_ct)

$class
[1] "POSIXct" "POSIXt"

$tzone
[1] "UTC"

56

Date-times

The tzone attribute controls only how the date-time is
formatted; it does not control the instant of time represented
by the vector. Note that the time is not printed if it is midnight.
structure(now_ct, tzone = "Asia/Tokyo")

[1] "2018-08-02 07:00:00 JST"

structure(now_ct, tzone = "America/New_York")

[1] "2018-08-01 18:00:00 EDT"

structure(now_ct, tzone = "Australia/Lord_Howe")

[1] "2018-08-02 08:30:00 +1030"
57

Exercises

10 What sort of object does table() return? What is its type?
What attributes does it have? How does the
dimensionality change as you tabulate more variables?

11 What happens to a factor when you modify its levels?
f1 <- factor(letters)
levels(f1) <- rev(levels(f1))

12 What does this code do? How do f2 and f3 differ from f1?
f2 <- rev(factor(letters))
f3 <- factor(letters, levels = rev(letters))

58

Lists

More complex than atomic vectors
Elements are references to objects of any type

l1 <- list(
1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9)

)
typeof(l1)

[1] "list"

str(l1)

List of 4
$: int [1:3] 1 2 3
$: chr "a"
$: logi [1:3] TRUE FALSE TRUE
$: num [1:2] 2.3 5.9

59

Lists

Lists can be recursive: a list can contain other lists.
l3 <- list(list(list(1)))
str(l3)

List of 1
$:List of 1
..$:List of 1
.. ..$: num 1

60

Lists

c() will combine several lists into one.
l4 <- list(list(1, 2), c(3, 4))
l5 <- c(list(1, 2), c(3, 4))
str(l4)

List of 2
$:List of 2
..$: num 1
..$: num 2

$: num [1:2] 3 4

str(l5)

List of 4
$: num 1
$: num 2
$: num 3
$: num 4

61

Testing and coercion

list(1:3)

[[1]]
[1] 1 2 3

as.list(1:3)

[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

You can turn a list into an atomic vector with unlist().
62

Data frames and tibbles

Most important S3 vectors built on lists:
data frames and tibbles.

df1 <- data.frame(x = 1:3, y = letters[1:3])
typeof(df1)

[1] "list"

attributes(df1)

$names
[1] "x" "y"

$class
[1] "data.frame"

$row.names
[1] 1 2 3 63

Data frames and tibbles

A data frame has a constraint: the length of each of its
vectors must be the same.
A data frame has rownames() and colnames(). The
names() of a data frame are the column names.
A data frame has nrow() rows and ncol() columns. The
length() of a data frame gives the number of columns.

64

Tibbles

Modern reimagining of the data frame.
tibbles are “lazy and surly”: they do less and complain more.

library(tibble)
df2 <- tibble(x = 1:3, y = letters[1:3])
typeof(df2)

[1] "list"

attributes(df2)

$class
[1] "tbl_df" "tbl" "data.frame"

$row.names
[1] 1 2 3

$names
[1] "x" "y" 65

Creating data frames and tibbles

names(data.frame(`1` = 1))

[1] "X1"
names(tibble(`1` = 1))

[1] "1"

66

Creating data frames and tibbles

data.frame(x = 1:4, y = 1:2)

x y
1 1 1
2 2 2
3 3 1
4 4 2

tibble(x = 1:4, y = 1:2)

Error in `tibble()`:
! Tibble columns must have compatible sizes.
* Size 4: Existing data.
* Size 2: Column `y`.
i Only values of size one are recycled.

67

Creating data frames and tibbles

tibble(
x = 1:3,
y = x * 2,
z = 5

)

A tibble: 3 x 3
x y z

<int> <dbl> <dbl>
1 1 2 5
2 2 4 5
3 3 6 5

68

Row names

Data frames allow you to label each row with a name, a
character vector containing only unique values:
df3 <- data.frame(
age = c(35, 27, 18),
hair = c("blond", "brown", "black"),
row.names = c("Bob", "Susan", "Sam")

)
df3

age hair
Bob 35 blond
Susan 27 brown
Sam 18 black

69

Row names

tibbles do not support row names
convert row names into a regular column with either
rownames_to_column(), or the rownames argument:

as_tibble(df3, rownames = "name")

A tibble: 3 x 3
name age hair
<chr> <dbl> <chr>

1 Bob 35 blond
2 Susan 27 brown
3 Sam 18 black

70

Printing

dplyr::starwars

A tibble: 87 x 14
name height mass hair_color skin_color eye_color birth_year sex
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>

1 Luke Skyw~ 172 77 blond fair blue 19 male
2 C-3PO 167 75 <NA> gold yellow 112 none
3 R2-D2 96 32 <NA> white, bl~ red 33 none
4 Darth Vad~ 202 136 none white yellow 41.9 male
5 Leia Orga~ 150 49 brown light brown 19 fema~
6 Owen Lars 178 120 brown, gr~ light blue 52 male
7 Beru Whit~ 165 75 brown light blue 47 fema~
8 R5-D4 97 32 <NA> white, red red NA none
9 Biggs Dar~ 183 84 black light brown 24 male

10 Obi-Wan K~ 182 77 auburn, w~ fair blue-gray 57 male
i 77 more rows
i 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
films <list>, vehicles <list>, starships <list> 71

Printing

Tibbles only show first 10 rows and all columns that fit on
screen. Additional columns shown at bottom.
Each column labelled with its type, abbreviated to 3–4
letters.
Wide columns truncated.

72

List columns

df <- data.frame(x = 1:3)
df$y <- list(1:2, 1:3, 1:4)

data.frame(
x = 1:3,
y = I(list(1:2, 1:3, 1:4))

)

x y
1 1 1, 2
2 2 1, 2, 3
3 3 1, 2, 3, 4

tibble(
x = 1:3,
y = list(1:2, 1:3, 1:4)

)

A tibble: 3 x 2
x y

<int> <list>
1 1 <int [2]>
2 2 <int [3]>
3 3 <int [4]>

73

Matrix and data frame columns

dfm <- tibble(
x = 1:3 * 10,
y = matrix(1:9, nrow = 3),
z = data.frame(a = 3:1, b = letters[1:3])

)
str(dfm)

tibble [3 x 3] (S3: tbl_df/tbl/data.frame)
$ x: num [1:3] 10 20 30
$ y: int [1:3, 1:3] 1 2 3 4 5 6 7 8 9
$ z:'data.frame': 3 obs. of 2 variables:
..$ a: int [1:3] 3 2 1
..$ b: chr [1:3] "a" "b" "c" 74

Exercises

13 Can you have a data frame with zero rows? What about
zero columns?

14 What happens if you attempt to set rownames that are
not unique?

15 If df is a data frame, what can you say about t(df), and
t(t(df))? Perform some experiments, making sure to try
different column types.

16 What does as.matrix() do when applied to a data frame
with columns of different types? How does it differ from
data.matrix()? 75

NULL

length(NULL)

[1] 0

You can test for NULLs with is.null():
x <- NULL
x == NULL

logical(0)
is.null(x)

[1] TRUE
76

	Introduction to R
	Names and values
	Vectors

