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About me

Tomasz Woźniak

Senior Lecturer in Econometrics at the unimelb
Econometrician: Bayesian time series analyst
Develops methods for applied macro research
Loves cycling, yoga, books, volunteering, contemporary
theatre, music, and art
I am nice!
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https://github.com/donotdespair


About me

Tomasz Woźniak

R enthusiast and specialised user for 16 years
bsvars package author (more coming up)
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https://github.com/donotdespair
https://cran.r-project.org/package=bsvars
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Motivations

Coding in C++ for R applications has always been possible
It requires:

▶ writing C++ code
▶ compiling it, and
▶ linking it to R

Difficulties:
▶ tedious object-oriented programming
▶ necessity of assuring object compatibility

Benefits are great, but the cost was too high
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Motivations

Rcpp is a family of packages by Dirk Eddelbuetel et
al. facilitating the application of C++ to R
An interface for communication between R and C++
Greatly simplifies the workflow
Easier to benefit from the best of the two worlds:

▶ C++ programs are pre-compiled assuring fast computations
perfect for writing functions

▶ R code is interpreted and dynamic:
perfect for data analysis
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Objectives for this session

to facilitate working with C++ for R applications
to perform a sequence of exercises
to focus on:

▶ basic programming structures
▶ functional programming
▶ object types: scalars, vectors, matrices, lists, etc.
▶ linear algebra
▶ statistical distributions
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Materials for this session

Lecture slides
C++ scripts:

▶ nicetry.cpp
▶ nicelr.cpp
▶ nicelist.cpp
▶ nicerig2.cpp

R scripts:
▶ nicepackage.R
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https://github.com/numbats/arp/blob/main/week12/nicetry.cpp
https://github.com/numbats/arp/blob/main/week12/nicelr.cpp
https://github.com/numbats/arp/blob/main/week12/nicelist.cpp
https://github.com/numbats/arp/blob/main/week12/nicerig2.cpp
https://github.com/numbats/arp/blob/main/week12/nicepackage.R


learning resources

This session!
vignettes: for packages Rcpp and RcppArmadillo
online resources:

▶ Armadillo library documentation
▶ RcppGallery
▶ stackoverflow.com tag:rcpp

François, R., Optimizing R Code with Rcpp on datacamp
Tsuda, M., Rcpp for everyone
Eddelbuettel, D., Seamless R and C++ Integration with Rcpp
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https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=RcppArmadillo
https://arma.sourceforge.net/docs.html
https://gallery.rcpp.org/
https://stackoverflow.com/questions/tagged/rcpp
https://www.datacamp.com/courses/optimizing-r-code-with-rcpp
https://teuder.github.io/rcpp4everyone_en/
https://doi.org/10.1007/978-1-4614-6868-4
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The first steps with Rcpp

Consider the following C++ applications in R:

Define a C++ function in an R script
▶ promptly available for fast computations

Develop a C++ function in a .cpp file
▶ perfect for developing, testing, and benchmarking

Use a function from a *.cpp file in R computations
▶ perfect for elaborate projects

Develop an R package using C++ code
▶ perfect for sharing your work with the community
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Define a C++ function in an R script

Rcpp::cppFunction('
DataFrame nicetry (int n) {
NumericVector v = rnorm(n);
IntegerVector x = seq_len(n);
LogicalVector y = v > 0;
CharacterVector z(n, "nice");
return DataFrame::create(_["v"] = v, _["x"] = x, _["y"] = y, _["z"] = z);

}
')
nicetry(2)

v x y z
1 -0.28 1 FALSE nice
2 -1.42 2 FALSE nice
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Develop a C++ function in a nicetry.cpp file

A *.cpp file sample contents:
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List nicetry (int n) {
NumericVector v = rnorm(n);
IntegerVector x = seq_len(n);
LogicalVector y = v > 0;
CharacterVector z(n, "nice");
return List::create(_["v"] = v, _["x"] = x, _["y"] = y, _["z"] = z);

}
/*** R
nicetry(2)
*/
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Develop a C++ function in a nicetry.cpp file

The script includes:

Rcpp library and namespace declarations (skip: Rcpp::)
#include <Rcpp.h>
using namespace Rcpp;

Rcpp marker to export the nicetry function to R
// [[Rcpp::export]]

sample R script
/*** R
nicetry(2)
*/ 15



Develop a C++ function in a nicetry.cpp file

The script includes:

the function definition
List nicetry ( // output type and function name

int n // input type and name
) {

NumericVector v = rnorm(n); // define a numeric vector and fill it
IntegerVector x = seq_len(n); // define an integer vector as a sequence
LogicalVector y = v > 0; // define a logical vector
CharacterVector z(n, "nice"); // define a character vector
// return a list with the created vectors
return List::create(_["v"] = v, _["x"] = x, _["y"] = y, _["z"] = z);

}
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Develop a C++ function in a .cpp file

\ Your turn!

Develop a C++ function that creates a Tx3 matrix with:
an integer T as the only argument
a constant term column
a linear trend t− t̄ column
a quadratic trend (t− t̄)2 column

where t goes from 1 to T, and t̄ is the mean of sequence t.
Get some help HERE.
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https://teuder.github.io/rcpp4everyone_en/080_vector.html


Use a function from a nicelist.cpp file in R

nicelist.cpp file contents:
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List nicelist (int n) {
NumericVector p = rnorm(n);
NumericVector s(n);
for (int i=0; i<n; i++) {
s[i] = pow(p[i], 2);

}
return List::create(_["p"] = p, _["s"] = s);

}
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Use a function from a nicelist.cpp file in R

R script using the function from nicelist.cpp:
Rcpp::sourceCpp("nicelist.cpp")
nicelist(3)

$p
[1] -0.484 1.366 0.159

$s
[1] 0.2346 1.8662 0.0251
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Develop a C++ function in a .cpp file

\ Your turn!

Consider a Gaussian random walk:

yt = yt−1 + εt, εt ∼ N(0, 1), y0 = 0

Develop a C++ function that:
has an integer T as the only argument
returns a T-vector with Gaussian random walk

20



Outline

1 Motivation

2 The first steps with Rcpp

3 Some stats with RcppArmadillo

4 Create an R package with compiled code in ten steps

21



Some stats with RcppArmadillo

Data objects from Rcpp have limited functionality
Armadillo is a C++ library for linear algebra that

▶ provides a rich set of functions
▶ has a simple and intuitive syntax
▶ includes fast linear algebra routines, and
▶ fast random number generators
▶ has fantastic documentation

RcppArmadillo is a simplified interface with Armadillo
▶ allows seamless integration with Rcpp
▶ easily passes data between R and C++
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http://arma.sourceforge.net/docs.html


Some stats with RcppArmadillo: linear regression

Contents of a nicelr.cpp file:
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace arma;

// [[Rcpp::export]]
vec nicelr (vec y, mat x) {
vec beta_hat = solve(x.t() * x, x.t() * y);
return beta_hat;

}

/*** R
x = cbind(rep(1,5),1:5); y = x %*% c(1,2) + rnorm(5)
nicelr(y, x)
*/
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Some stats with RcppArmadillo: linear regression

\ Your turn!

Extend the nicelr function to return also the covariance
of β̂:

Ĉov
[
β̂

]
= σ̂2 (

X′X
)−1

, σ̂2 = 1
T

(
Y − β̂X

)′ (
Y − β̂X

)

don’t adjust the arguments
return beta_hat and cov_beta_hat in a list

Get some help HERE. 24

http://arma.sourceforge.net/docs.html


Some stats with RcppArmadillo: IG2 distribution

Sampling random draws from an inverted gamma 2
distribution.

A positive random variable σ2 following an inverted gamma 2
distribution with positive scale s and shape ν parameters is
denoted by:

σ2 ∼ IG2 (s, ν)

1 Generate random draw x from χ2(ν)
2 Return s

x
25



Some stats with RcppArmadillo: IG2 distribution

Contents of a nicerig2.cpp file:
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace arma;

// [[Rcpp::export]]
vec nicerig2 (const int n, const double s, const double nu) {
vec rig2 = s / chi2rnd( nu, n );
return rig2;

}

/*** R
nicerig2(2, 1, 1)
*/

26



Some stats with RcppArmadillo: NIG2 distribution

Normal-inverted gamma 2 distribution.

Random variables, an N-vector x and a positive scalar, σ2,
following the normal-inverted gamma 2 distribution with

an N-vector of the mean µ

a positive definite N× N covariance matrix Σ
a positive scale s
a positive shape ν
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Some stats with RcppArmadillo: NIG2 distribution

Normal-inverted gamma 2 distribution.
(
x, σ2)

∼ NIG2 (µ, Σ, s, ν)

p
(
x, σ2)

= p
(
x | σ2)

p
(
σ2)

σ2 ∼ IG2 (s, ν)
x | σ2 ∼ N

(
µ, σ2Σ

)
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Some stats with RcppArmadillo: NIG2 distribution

To generate n random draws from the normal-inverted gamma
2 distribution:

1 Generate n independent random draws of σ2(j) from
IG2(s, ν) for j = 1, . . . ,n

2 For each j, generate the corresponding random draw of x(j)

from N
(
µ, σ2(j)Σ

)
3 Return the collection of pairs

{
x(j), σ2(j)

}n
j=1
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Some stats with RcppArmadillo: NIG2 distribution

\ Your turn!

Complement the niceig2 function with another one that
provides n random draws from the normal-inverted gamma
2 distribution.

adjust the arguments
return a list containing

▶ an n-vector of σ2 draws
▶ an n× N matrix of x draws

Get some help HERE.
30

http://arma.sourceforge.net/docs.html


Some stats with RcppArmadillo: Simulation smoother

\ Additional resources!

Have a look at my article on Simulation Smoother using
RcppArmadillo at Rcpp Gallery.
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https://gallery.rcpp.org/articles/simulation-smoother-using-rcpparmadillo/
https://gallery.rcpp.org/articles/simulation-smoother-using-rcpparmadillo/
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Step 1: create a package

Run the following code in R:
RcppArmadillo::RcppArmadillo.package.skeleton("nicepackage")

C++ code lives in src/
DESCRIPTION includes necessary dependencies
NAMESPACE includes useDynLib(nicepackage)
R functions in R/ refer to C++ functions via .Call()
File R/RcppExports.R contains all C++ functions exported
to R
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Step 2: create R project and open it

you know what to do
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Step 3: some cleaning

remove files:
▶ Read-and-delete-me
▶ src/HelloWorld.cpp
▶ man/*
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Step 4: include useful elements

1 Set git usethis::use_git()
2 Set licencing usethis::use_gpl3_license()
3 Set package doc usethis::use_package_doc()
4 Set roxy roxygen2::roxygenise()

copy Encoding: UTC-8 to DESCRIPTION
remove the NAMESPACE file
run roxygen2::roxygenise() again
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Step 5: edit the DESCRIPTION file

you know what to do!
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Step 6: include compiled code

1 copy the nicerig2.cpp file to src/ directory
2 edit it
3 include the header file nicerig2.h in the src/ directory
4 edit it
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Step 7: compile the code the first time

1 Run Rcpp::compileAttributes() to update the
R/RcppExports.R file
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Step 8: include R wrapper for C++ function

1 Create an R/nicerig2.R file
2 Copy/paste the corresponding function from the

R/RcppExports.R file
3 Include argument check
4 Include documentation
5 Implement further adjustments
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Step 9: some final touches

1 Run Rcpp::compileAttributes()
2 Run devtools::document() to generate documentation
3 Run devtools::check() to check the package

TADA! Your package is ready!
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Step 10: use the package for the first time

1 Run devtools::load_all() to load the package
2 Run hist(nicerig2(1e4), breaks = 100) to test the

function
3 Run ?nicerig2 and ?nicepackage to check the

documentation
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What’s next?

Rewrite all your code in Rcpp!

Nice!
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