
1

ETC4500/ETC5450
Advanced R programming

Week 12: Rewriting R code in C++

arp.numbat.space

https://arp.numbat.space

Outline

1 Motivation

2 The first steps with Rcpp

3 Some stats with RcppArmadillo

4 Create an R package with compiled code in ten steps

2

About me

Tomasz Woźniak

Senior Lecturer in Econometrics at the unimelb
Econometrician: Bayesian time series analyst
Develops methods for applied macro research
Loves cycling, yoga, books, volunteering, contemporary
theatre, music, and art
I am nice!

3

https://github.com/donotdespair

About me

Tomasz Woźniak

R enthusiast and specialised user for 16 years
bsvars package author (more coming up)

4

https://github.com/donotdespair
https://cran.r-project.org/package=bsvars

Outline

1 Motivation

2 The first steps with Rcpp

3 Some stats with RcppArmadillo

4 Create an R package with compiled code in ten steps

5

Motivations

Coding in C++ for R applications has always been possible
It requires:

▶ writing C++ code
▶ compiling it, and
▶ linking it to R

Difficulties:
▶ tedious object-oriented programming
▶ necessity of assuring object compatibility

Benefits are great, but the cost was too high

6

Motivations

Rcpp is a family of packages by Dirk Eddelbuetel et
al. facilitating the application of C++ to R
An interface for communication between R and C++
Greatly simplifies the workflow
Easier to benefit from the best of the two worlds:

▶ C++ programs are pre-compiled assuring fast computations
perfect for writing functions

▶ R code is interpreted and dynamic:
perfect for data analysis

7

Objectives for this session

to facilitate working with C++ for R applications
to perform a sequence of exercises
to focus on:

▶ basic programming structures
▶ functional programming
▶ object types: scalars, vectors, matrices, lists, etc.
▶ linear algebra
▶ statistical distributions

8

Materials for this session

Lecture slides
C++ scripts:

▶ nicetry.cpp
▶ nicelr.cpp
▶ nicelist.cpp
▶ nicerig2.cpp

R scripts:
▶ nicepackage.R

9

https://github.com/numbats/arp/blob/main/week12/nicetry.cpp
https://github.com/numbats/arp/blob/main/week12/nicelr.cpp
https://github.com/numbats/arp/blob/main/week12/nicelist.cpp
https://github.com/numbats/arp/blob/main/week12/nicerig2.cpp
https://github.com/numbats/arp/blob/main/week12/nicepackage.R

learning resources

This session!
vignettes: for packages Rcpp and RcppArmadillo
online resources:

▶ Armadillo library documentation
▶ RcppGallery
▶ stackoverflow.com tag:rcpp

François, R., Optimizing R Code with Rcpp on datacamp
Tsuda, M., Rcpp for everyone
Eddelbuettel, D., Seamless R and C++ Integration with Rcpp

10

https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=RcppArmadillo
https://arma.sourceforge.net/docs.html
https://gallery.rcpp.org/
https://stackoverflow.com/questions/tagged/rcpp
https://www.datacamp.com/courses/optimizing-r-code-with-rcpp
https://teuder.github.io/rcpp4everyone_en/
https://doi.org/10.1007/978-1-4614-6868-4

Outline

1 Motivation

2 The first steps with Rcpp

3 Some stats with RcppArmadillo

4 Create an R package with compiled code in ten steps

11

The first steps with Rcpp

Consider the following C++ applications in R:

Define a C++ function in an R script
▶ promptly available for fast computations

Develop a C++ function in a .cpp file
▶ perfect for developing, testing, and benchmarking

Use a function from a *.cpp file in R computations
▶ perfect for elaborate projects

Develop an R package using C++ code
▶ perfect for sharing your work with the community

12

Define a C++ function in an R script

Rcpp::cppFunction('
DataFrame nicetry (int n) {
NumericVector v = rnorm(n);
IntegerVector x = seq_len(n);
LogicalVector y = v > 0;
CharacterVector z(n, "nice");
return DataFrame::create(_["v"] = v, _["x"] = x, _["y"] = y, _["z"] = z);

}
')
nicetry(2)

v x y z
1 -0.28 1 FALSE nice
2 -1.42 2 FALSE nice

13

Develop a C++ function in a nicetry.cpp file

A *.cpp file sample contents:
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List nicetry (int n) {
NumericVector v = rnorm(n);
IntegerVector x = seq_len(n);
LogicalVector y = v > 0;
CharacterVector z(n, "nice");
return List::create(_["v"] = v, _["x"] = x, _["y"] = y, _["z"] = z);

}
/*** R
nicetry(2)
*/

14

Develop a C++ function in a nicetry.cpp file

The script includes:

Rcpp library and namespace declarations (skip: Rcpp::)
#include <Rcpp.h>
using namespace Rcpp;

Rcpp marker to export the nicetry function to R
// [[Rcpp::export]]

sample R script
/*** R
nicetry(2)
*/ 15

Develop a C++ function in a nicetry.cpp file

The script includes:

the function definition
List nicetry (// output type and function name

int n // input type and name
) {

NumericVector v = rnorm(n); // define a numeric vector and fill it
IntegerVector x = seq_len(n); // define an integer vector as a sequence
LogicalVector y = v > 0; // define a logical vector
CharacterVector z(n, "nice"); // define a character vector
// return a list with the created vectors
return List::create(_["v"] = v, _["x"] = x, _["y"] = y, _["z"] = z);

}

16

Develop a C++ function in a .cpp file

\ Your turn!

Develop a C++ function that creates a Tx3 matrix with:
an integer T as the only argument
a constant term column
a linear trend t− t̄ column
a quadratic trend (t− t̄)2 column

where t goes from 1 to T, and t̄ is the mean of sequence t.
Get some help HERE.

17

https://teuder.github.io/rcpp4everyone_en/080_vector.html

Use a function from a nicelist.cpp file in R

nicelist.cpp file contents:
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List nicelist (int n) {
NumericVector p = rnorm(n);
NumericVector s(n);
for (int i=0; i<n; i++) {
s[i] = pow(p[i], 2);

}
return List::create(_["p"] = p, _["s"] = s);

}

18

Use a function from a nicelist.cpp file in R

R script using the function from nicelist.cpp:
Rcpp::sourceCpp("nicelist.cpp")
nicelist(3)

$p
[1] -0.484 1.366 0.159

$s
[1] 0.2346 1.8662 0.0251

19

Develop a C++ function in a .cpp file

\ Your turn!

Consider a Gaussian random walk:

yt = yt−1 + εt, εt ∼ N(0, 1), y0 = 0

Develop a C++ function that:
has an integer T as the only argument
returns a T-vector with Gaussian random walk

20

Outline

1 Motivation

2 The first steps with Rcpp

3 Some stats with RcppArmadillo

4 Create an R package with compiled code in ten steps

21

Some stats with RcppArmadillo

Data objects from Rcpp have limited functionality
Armadillo is a C++ library for linear algebra that

▶ provides a rich set of functions
▶ has a simple and intuitive syntax
▶ includes fast linear algebra routines, and
▶ fast random number generators
▶ has fantastic documentation

RcppArmadillo is a simplified interface with Armadillo
▶ allows seamless integration with Rcpp
▶ easily passes data between R and C++

22

http://arma.sourceforge.net/docs.html

Some stats with RcppArmadillo: linear regression

Contents of a nicelr.cpp file:
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace arma;

// [[Rcpp::export]]
vec nicelr (vec y, mat x) {
vec beta_hat = solve(x.t() * x, x.t() * y);
return beta_hat;

}

/*** R
x = cbind(rep(1,5),1:5); y = x %*% c(1,2) + rnorm(5)
nicelr(y, x)
*/

23

Some stats with RcppArmadillo: linear regression

\ Your turn!

Extend the nicelr function to return also the covariance
of β̂:

Ĉov
[
β̂

]
= σ̂2 (

X′X
)−1

, σ̂2 = 1
T

(
Y − β̂X

)′ (
Y − β̂X

)

don’t adjust the arguments
return beta_hat and cov_beta_hat in a list

Get some help HERE. 24

http://arma.sourceforge.net/docs.html

Some stats with RcppArmadillo: IG2 distribution

Sampling random draws from an inverted gamma 2
distribution.

A positive random variable σ2 following an inverted gamma 2
distribution with positive scale s and shape ν parameters is
denoted by:

σ2 ∼ IG2 (s, ν)

1 Generate random draw x from χ2(ν)
2 Return s

x
25

Some stats with RcppArmadillo: IG2 distribution

Contents of a nicerig2.cpp file:
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace arma;

// [[Rcpp::export]]
vec nicerig2 (const int n, const double s, const double nu) {
vec rig2 = s / chi2rnd(nu, n);
return rig2;

}

/*** R
nicerig2(2, 1, 1)
*/

26

Some stats with RcppArmadillo: NIG2 distribution

Normal-inverted gamma 2 distribution.

Random variables, an N-vector x and a positive scalar, σ2,
following the normal-inverted gamma 2 distribution with

an N-vector of the mean µ

a positive definite N× N covariance matrix Σ
a positive scale s
a positive shape ν

27

Some stats with RcppArmadillo: NIG2 distribution

Normal-inverted gamma 2 distribution.
(
x, σ2)

∼ NIG2 (µ, Σ, s, ν)

p
(
x, σ2)

= p
(
x | σ2)

p
(
σ2)

σ2 ∼ IG2 (s, ν)
x | σ2 ∼ N

(
µ, σ2Σ

)

28

Some stats with RcppArmadillo: NIG2 distribution

To generate n random draws from the normal-inverted gamma
2 distribution:

1 Generate n independent random draws of σ2(j) from
IG2(s, ν) for j = 1, . . . ,n

2 For each j, generate the corresponding random draw of x(j)

from N
(
µ, σ2(j)Σ

)
3 Return the collection of pairs

{
x(j), σ2(j)

}n
j=1

29

Some stats with RcppArmadillo: NIG2 distribution

\ Your turn!

Complement the niceig2 function with another one that
provides n random draws from the normal-inverted gamma
2 distribution.

adjust the arguments
return a list containing

▶ an n-vector of σ2 draws
▶ an n× N matrix of x draws

Get some help HERE.
30

http://arma.sourceforge.net/docs.html

Some stats with RcppArmadillo: Simulation smoother

\ Additional resources!

Have a look at my article on Simulation Smoother using
RcppArmadillo at Rcpp Gallery.

31

https://gallery.rcpp.org/articles/simulation-smoother-using-rcpparmadillo/
https://gallery.rcpp.org/articles/simulation-smoother-using-rcpparmadillo/

Outline

1 Motivation

2 The first steps with Rcpp

3 Some stats with RcppArmadillo

4 Create an R package with compiled code in ten steps

32

Step 1: create a package

Run the following code in R:
RcppArmadillo::RcppArmadillo.package.skeleton("nicepackage")

C++ code lives in src/
DESCRIPTION includes necessary dependencies
NAMESPACE includes useDynLib(nicepackage)
R functions in R/ refer to C++ functions via .Call()
File R/RcppExports.R contains all C++ functions exported
to R

33

Step 2: create R project and open it

you know what to do

34

Step 3: some cleaning

remove files:
▶ Read-and-delete-me
▶ src/HelloWorld.cpp
▶ man/*

35

Step 4: include useful elements

1 Set git usethis::use_git()
2 Set licencing usethis::use_gpl3_license()
3 Set package doc usethis::use_package_doc()
4 Set roxy roxygen2::roxygenise()

copy Encoding: UTC-8 to DESCRIPTION
remove the NAMESPACE file
run roxygen2::roxygenise() again

36

Step 5: edit the DESCRIPTION file

you know what to do!

37

Step 6: include compiled code

1 copy the nicerig2.cpp file to src/ directory
2 edit it
3 include the header file nicerig2.h in the src/ directory
4 edit it

38

Step 7: compile the code the first time

1 Run Rcpp::compileAttributes() to update the
R/RcppExports.R file

39

Step 8: include R wrapper for C++ function

1 Create an R/nicerig2.R file
2 Copy/paste the corresponding function from the

R/RcppExports.R file
3 Include argument check
4 Include documentation
5 Implement further adjustments

40

Step 9: some final touches

1 Run Rcpp::compileAttributes()
2 Run devtools::document() to generate documentation
3 Run devtools::check() to check the package

TADA! Your package is ready!

41

Step 10: use the package for the first time

1 Run devtools::load_all() to load the package
2 Run hist(nicerig2(1e4), breaks = 100) to test the

function
3 Run ?nicerig2 and ?nicepackage to check the

documentation

42

What’s next?

Rewrite all your code in Rcpp!

Nice!

43

	Motivation
	The first steps with Rcpp
	Some stats with RcppArmadillo
	Create an R package with compiled code in ten steps

