
1

ETC4500/ETC5450
Advanced R programming

Week 2: Foundations of R programming

arp.numbat.space

https://arp.numbat.space

Outline

1 Subsetting

2 Control flow

3 Functions

4 Environments

2

Outline

1 Subsetting

2 Control flow

3 Functions

4 Environments

3

Exercises

1 What is the result of subsetting a vector with positive
integers, negative integers, a logical vector, or a character
vector?

2 What’s the difference between [, [[, and $ when applied
to a list?

3 When should you use drop = FALSE?

4

Exercises

4 Fix each of the following common data frame subsetting errors:
mtcars[mtcars$cyl = 4,]
mtcars[-1:4,]
mtcars[mtcars$cyl <= 5]
mtcars[mtcars$cyl == 4 | 6,]

5 Extract the residual degrees of freedom from mod
mod <- lm(mpg ~ wt, data = mtcars)

6 Extract the R squared from the model summary (summary(mod))

5

Exercises

7 How would you randomly permute the columns of a data
frame?

8 Can you simultaneously permute the rows and columns in
one step?

9 How would you select a random sample of m rows from a
data frame? What if the sample had to be contiguous (i.e.,
with an initial row, a final row, and every row in between)?

10 How could you put the columns in a data frame in
alphabetical order?

6

Outline

1 Subsetting

2 Control flow

3 Functions

4 Environments

7

Exercises

11 What is the difference between if and ifelse() and
dplyr::if_else()?

12 What type of vector does each of the following calls to
ifelse() return?
ifelse(TRUE, 1, "no")
ifelse(FALSE, 1, "no")
ifelse(NA, 1, "no")

8

Exercises

13 Why does the following code work?
x <- 1:10
if (length(x)) "not empty" else "empty"

[1] "not empty"

x <- numeric()
if (length(x)) "not empty" else "empty"

[1] "empty"

9

Outline

1 Subsetting

2 Control flow

3 Functions

4 Environments

10

Function fundamentals

Almost all functions can be broken down into three
components: arguments, body, and environment.

▶ The formals(), the list of arguments that control how you call
the function.

▶ The body(), the code inside the function.
▶ The environment(), the data structure that determines how the

function finds the values associated with the names.

Functions are objects and have attributes.

11

Function components

f02 <- function(x, y) {
A comment
x + y

}
formals(f02)

$x

$y

body(f02)

{
x + y

}

environment(f02)

<environment: R_GlobalEnv>
12

Function attributes

attr(f02, "srcref")

function(x, y) {
A comment
x + y

}

13

Invoking a function

mean(1:10, na.rm = TRUE)

[1] 5.5

mean(, TRUE, x = 1:10)

[1] 5.5

args <- list(1:10, na.rm = TRUE)
do.call(mean, args)

[1] 5.5

14

Function composition

square <- function(x) { xˆ2 }
deviation <- function(x) { x - mean(x) }
x <- runif(100)

Nesting:
sqrt(mean(square(deviation(x))))

[1] 0.311
Intermediate variables:
out <- deviation(x)
out <- square(out)
out <- mean(out)
out <- sqrt(out)
out

[1] 0.311

Pipe:
x |>

deviation() |>
square() |>
mean() |>
sqrt()

[1] 0.311

15

Lexical scoping

Names defined inside a function mask names defined outside
a function.
x <- 10
y <- 20
g02 <- function() {
x <- 1
y <- 2
c(x, y)

}
g02()

[1] 1 2

16

Lexical scoping

Names defined inside a function mask names defined outside
a function.
x <- 2
g03 <- function() {
y <- 1
c(x, y)

}
g03()

[1] 2 1

And this doesn't change the previous value of y
y

[1] 20 17

Lexical scoping

Names defined inside a function mask names defined outside
a function.
x <- 1
g04 <- function() {
y <- 2
i <- function() {
z <- 3
c(x, y, z)

}
i()

}
g04()

[1] 1 2 3
18

Functions versus variables

g07 <- function(x) { x + 1 }
g08 <- function() {
g07 <- function(x) { x + 100 }
g07(10)

}
g08()

[1] 110

g09 <- function(x) { x + 100 }
g10 <- function() {
g09 <- 10
g09(g09)

}
g10()

[1] 110 19

A fresh start

What happens to values between invocations of a function?
g11 <- function() {
if (!exists("a")) {
a <- 1

} else {
a <- a + 1

}
a

}

g11()

[1] 1

g11()

[1] 1
20

Dynamic lookup

g12 <- function() { x + 1 }
x <- 15
g12()

[1] 16

x <- 20
g12()

[1] 21

codetools::findGlobals(g12)

[1] "{" "+" "x"

It is good practice to pass all the inputs to a function as arguments.

21

Dynamic lookup

g12 <- function() { x + 1 }
x <- 15
g12()

[1] 16

x <- 20
g12()

[1] 21

codetools::findGlobals(g12)

[1] "{" "+" "x"

It is good practice to pass all the inputs to a function as arguments.
21

Lazy evaluation

This code doesn’t generate an error because x is never used:
h01 <- function(x) {
10

}
h01(stop("This is an error!"))

[1] 10

22

Promises

Lazy evaluation is powered by a data structure called a promise.

A promise has three components:

An expression, like x + y, which gives rise to the delayed
computation.

An environment where the expression should be evaluated

A value, which is computed and cached the first time a promise
is accessed when the expression is evaluated in the specified
environment.

23

Promises

y <- 10
h02 <- function(x) {
y <- 100
x + 1

}
h02(y)

[1] 11

24

Promises

double <- function(x) {
message("Calculating...")
x * 2

}
h03 <- function(x) {
c(x, x)

}
h03(double(20))

Calculating...

[1] 40 40

Promises are like a quantum state: any attempt to inspect them with
R code will force an immediate evaluation, making the promise
disappear.

25

Promises

double <- function(x) {
message("Calculating...")
x * 2

}
h03 <- function(x) {
c(x, x)

}
h03(double(20))

Calculating...

[1] 40 40

Promises are like a quantum state: any attempt to inspect them with
R code will force an immediate evaluation, making the promise
disappear. 25

Default arguments

Thanks to lazy evaluation, default values can be defined in
terms of other arguments, or even in terms of variables
defined later in the function:
h04 <- function(x = 1, y = x * 2, z = a + b) {
a <- 10
b <- 100
c(x, y, z)

}
h04()

[1] 1 2 110

Not recommended!

26

Default arguments

Thanks to lazy evaluation, default values can be defined in
terms of other arguments, or even in terms of variables
defined later in the function:
h04 <- function(x = 1, y = x * 2, z = a + b) {
a <- 10
b <- 100
c(x, y, z)

}
h04()

[1] 1 2 110

Not recommended!
26

Exercises

14 In hist(), the default value of xlim is range(breaks), the
default value for breaks is "Sturges", and
range("Sturges")

[1] "Sturges" "Sturges"

Explain how hist() works to get a correct xlim value.

27

Exercises

15 Explain why this function works. Why is it confusing?
show_time <- function(x = stop("Error!")) {

stop <- function(...) Sys.time()
print(x)

}
show_time()

[1] "2024-05-07 15:57:37 UTC"

28

... (dot-dot-dot)

Allows for any number of additional arguments.
You can use ... to pass additional arguments to another
function.
i01 <- function(y, z) {
list(y = y, z = z)

}
i02 <- function(x, ...) {
i01(...)

}
str(i02(x = 1, y = 2, z = 3))

List of 2
$ y: num 2
$ z: num 3 29

... (dot-dot-dot)

list(...) evaluates the arguments and stores them in a list:
i04 <- function(...) {
list(...)

}
str(i04(a = 1, b = 2))

List of 2
$ a: num 1
$ b: num 2

30

... (dot-dot-dot)

Allows you to pass arguments to a function called within your
function, without having to list them all explicitly.

Two downsides:

When you use it to pass arguments to another function, you
have to carefully explain to the user where those arguments go.
A misspelled argument will not raise an error. This makes it easy
for typos to go unnoticed:

sum(1, 2, NA, na_rm = TRUE)

[1] NA

31

... (dot-dot-dot)

Allows you to pass arguments to a function called within your
function, without having to list them all explicitly.

Two downsides:

When you use it to pass arguments to another function, you
have to carefully explain to the user where those arguments go.
A misspelled argument will not raise an error. This makes it easy
for typos to go unnoticed:

sum(1, 2, NA, na_rm = TRUE)

[1] NA

31

Exercises

16 Explain the following results:
sum(1, 2, 3)

[1] 6

mean(1, 2, 3)

[1] 1

sum(1, 2, 3, na.omit = TRUE)

[1] 7

mean(1, 2, 3, na.omit = TRUE)

[1] 1
32

Exiting a function

Most functions exit in one of two ways:

return a value, indicating success
throw an error, indicating failure.

33

Implicit versus explicit returns

Implicit return, where the last evaluated expression is the
return value:
j01 <- function(x) {
if (x < 10) {
0

} else {
10

}
}
j01(5)

[1] 0

j01(15)

[1] 10 34

Implicit versus explicit returns

Explicit return, by calling return():
j02 <- function(x) {
if (x < 10) {
return(0)

} else {
return(10)

}
}
j02(5)

[1] 0

j02(15)

[1] 10

35

Invisible values

Most functions return visibly: calling the function in an
interactive context prints the result.
j03 <- function() { 1 }
j03()

[1] 1

However, you can prevent automatic printing by applying
invisible() to the last value:
j04 <- function() { invisible(1) }
j04()

36

Invisible values

The most common function that returns invisibly is <-:
a <- 2
(a <- 2)

[1] 2

This is what makes it possible to chain assignments:
a <- b <- c <- d <- 2

In general, any function called primarily for a side effect (like
<-, print(), or plot()) should return an invisible value
(typically the value of the first argument). 37

Errors

If a function cannot complete its assigned task, it should
throw an error with stop(), which immediately terminates the
execution of the function.
j05 <- function() {
stop("I'm an error")
return(10)

}
j05()

Error in j05(): I'm an error

38

Exit handlers

j06 <- function(x) {
cat("Hello\n")
on.exit(cat("Goodbye!\n"), add = TRUE)
if (x) {
return(10)

} else {
stop("Error")

}
}

j06(TRUE)

Hello
Goodbye!
[1] 10

j06(FALSE)

Hello
Error in j06(FALSE): Error
Goodbye!

39

Exit handlers

on.exit() allows you to add clean-up code
with_dir <- function(dir, code) {
old <- setwd(dir)
on.exit(setwd(old), add = TRUE)
code

}
getwd()

[1] "/home/runner/work/arp/arp/week2"

with_dir("~", getwd())

[1] "/home/runner"

getwd()

[1] "/home/runner/work/arp/arp/week2"
40

Function forms

To understand computations in R, two slogans are
helpful:

Everything that exists is an object.
Everything that happens is a function call.

— John Chambers

41

Function forms

prefix: the function name comes before its arguments,
like foofy(a, b, c).
infix: the function name comes in between its arguments,
like x + y.
replacement: functions that replace values by
assignment, like names(df) <- c("a", "b", "c").
special: functions like [[, if, and for.

42

Rewriting to prefix form

Everything can be written in prefix form.
x + y
`+`(x, y)

names(df) <- c("x", "y", "z")
`names<-`(df, c("x", "y", "z"))

for(i in 1:10) print(i)
`for`(i, 1:10, print(i))

43

Don’t be evil!

`(` <- function(e1) {
if (is.numeric(e1) && runif(1) < 0.1) {
e1 + 1

} else {
e1

}
}
replicate(50, (1 + 2))

[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3
[36] 3 3 3 4 3 3 3 3 3 4 3 3 3 3 4

44

Prefix form

You can specify arguments in three ways:

By position, like help(mean).
By name, like help(topic = mean).
Using partial matching, like help(top = mean).

45

Exercises

17 Clarify the following list of odd function calls:
x <- sample(replace = TRUE, 20, x = c(1:10, NA))
y <- runif(min = 0, max = 1, 20)
cor(m = "k", y = y, u = "p", x = x)

46

Infix functions

Functions with 2 arguments, and the function name comes
between the arguments:

:, ::, :::, $, @, ˆ, *, /, +, -, >, >=, <, <=, ==, !=, !, &, &&, |, ||, ~,
<-, and <<-.
1 + 2

[1] 3
`+`(1, 2)

[1] 3
47

Infix functions

You can also create your own infix functions that start and end
with %.
`%+%` <- function(a, b) paste0(a, b)
"new " %+% "string"

[1] "new string"

48

Replacement functions

Replacement functions act like they modify their
arguments in place, and have the special name xxx<-.
They must have arguments named x and value, and must
return the modified object.

`second<-` <- function(x, value) {
x[2] <- value
x

}
x <- 1:10
second(x) <- 5L
x

[1] 1 5 3 4 5 6 7 8 9 10 49

Replacement functions

`modify<-` <- function(x, position, value) {
x[position] <- value
x

}
modify(x, 1) <- 10
x

[1] 10 5 3 4 5 6 7 8 9 10

When you write modify(x, 1) <- 10, behind the scenes R
turns it into:
x <- `modify<-`(x, 1, 10)

50

Outline

1 Subsetting

2 Control flow

3 Functions

4 Environments

51

Environment basics

Environments are data structures that power scoping.

An environment is similar to a named list, with four important
exceptions:

Every name must be unique.
The names in an environment are not ordered.
An environment has a parent.
Environments are not copied when modified.

52

Environment basics

library(rlang)
e1 <- env(
a = FALSE,
b = "a",
c = 2.3,
d = 1:3,

)

Special environments

The current environment is the environment in which
code is currently executing.
The global environment is where all interactive
computation takes place. Your “workspace”. 53

Parent environments

Every environment has a
parent.
If a name is not found in
an environment, R looks in
the parent environment.
The ancestors of the
global environment
include every attached
package.

env_parents(e1, last = empty_env())

[[1]] $ <env: global>
[[2]] $ <env: package:rlang>
[[3]] $ <env: package:dplyr>
[[4]] $ <env: package:stats>
[[5]] $ <env: package:graphics>
[[6]] $ <env: package:grDevices>
[[7]] $ <env: package:datasets>
[[8]] $ <env: renv:shims>
[[9]] $ <env: package:utils>

[[10]] $ <env: package:methods>
[[11]] $ <env: Autoloads>
[[12]] $ <env: package:base>
[[13]] $ <env: empty>

54

Super assignment

Regular assignment (<-) creates a variable in the current
environment.
Super assignment (<<-) modifies a variable in a parent
environment.
If it can’t find an existing variable, it creates one in the
global environment.

55

Package environments

Every package attached becomes one of the parents of the
global environment (in order of attachment).
search()

[1] ".GlobalEnv" "package:rlang" "package:dplyr"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:datasets" "renv:shims" "package:utils"

[10] "package:methods" "Autoloads" "package:base"

Attaching a package changes the parent of the global
environment.
Autoloads uses delayed bindings to save memory by only
loading package objects when needed.

56

Function environments

A function binds the current environment when it is created.
y <- 1
f <- function(x) {
env_print(current_env())
x + y

}
f(2)

<environment: 0x5637c9b391b0>
Parent: <environment: global>
Bindings:
* x: <lazy>

[1] 3

57

Namespaces

Package environment: how an R user finds a function in an
attached package (only includes exports)
Namespace environment: how a package finds its own objects
(includes non-exports as well)
Each namespace environment has an imports environment
(controlled via NAMESPACE file).

58

Caller environments

f <- function(x) {
g(x = 2)

}
g <- function(x) {
h(x = 3)

}
h <- function(x) {
stop()

}

f(x = 1)
#> Error: in h(x = 3)
traceback()
#> 4: stop() at #3
#> 3: h(x = 3) at #3
#> 2: g(x = 2) at #3
#> 1: f(x = 1) 59

Lazy evaluation

a <- function(x) b(x)
b <- function(x) c(x)
c <- function(x) x
a(f())
#> Error: in h(x = 3)
traceback()
#> 7: stop() at #3
#> 6: h(x = 3) at #3
#> 5: g(x = 2) at #3
#> 4: f() at #1
#> 3: c(x) at #1
#> 2: b(x) at #1
#> 1: a(f())
unused argument (clas

60

	Subsetting
	Control flow
	Functions
	Environments

