
1

ETC4500/ETC5450
Advanced R programming

Week 3: R package development

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 2

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 3

System setup
install.packages(c("devtools", "roxygen2", "testthat", "knitr"))

R build toolchain
Windows:
https://cran.r-project.org/bin/windows/Rtools/
macOS: xcode-select --install
Linux: sudo apt install r-base-dev

Verify
library(devtools)
dev_sitrep()

4

https://cran.r-project.org/bin/windows/Rtools/

System setup
install.packages(c("devtools", "roxygen2", "testthat", "knitr"))

R build toolchain
Windows:
https://cran.r-project.org/bin/windows/Rtools/
macOS: xcode-select --install
Linux: sudo apt install r-base-dev

Verify
library(devtools)
dev_sitrep()

4

https://cran.r-project.org/bin/windows/Rtools/

System setup
install.packages(c("devtools", "roxygen2", "testthat", "knitr"))

R build toolchain
Windows:
https://cran.r-project.org/bin/windows/Rtools/
macOS: xcode-select --install
Linux: sudo apt install r-base-dev

Verify
library(devtools)
dev_sitrep()

4

https://cran.r-project.org/bin/windows/Rtools/

Package states

source: the original files
bundled: some processing, and compressed to a single
.tar.gz file (e.g., to upload to CRAN)
binary: what you usually download from CRAN
installed: decompressed binary file stored in package
library
in-memory: loaded into R session using library()

5

Package states

6

Package structure

7

Once per machine:

• Get set up with use_devtools() so devtools is always loaded in

interactive R sessions

• create_github_token() — Set up GitHub credentials

• git_vaccinate() — Ignores common special files

Once per package:

• create_package() — Create a project with package scaffolding

• use_git() — Activate git

• use_github() — Connect to GitHub

• use_github_action() — Set up automated package checks

Package Structure

Package Development : : CHEATSHEET

 DESCRIPTION

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at r-pkgs.org • HTML cheatsheets at pos.it/cheatsheets • devtools 2.4.5 • usethis 2.2.2 • Updated: 2023-07

A package is a convention for organizing files into directories.

This cheat sheet shows how to work with the 7 most common
parts of an R package:

☑ Pick a license with use_mit_license(), use_gpl3_license(),
use_proprietary_license().

☑ Add packages that you need with use_package().

The  DESCRIPTION file describes your work, sets up how your
package will work with other packages, and applies a license.

DESCRIPTION NAMESPACE

Makes packages available Makes function available

Mandatory Optional (can use :: instead)

use_package() use_import_from()

 NAMESPACE
The  NAMESPACE file helps you make your package self-
contained: it won’t interfere with other packages, and other
packages won’t interfere with it.

☑ Export functions for users by placing @export in their
roxygen comments.

☑ Use objects from other packages with package::object or
@importFrom package object (recommended) or
@import package (use with caution).

☑ Call document() to generate NAMESPACE and load_all() to
reload.

All of the R code in your package goes in folder R/. A package with just
an R/ directory is still a very useful package.

☑ Create a new package project with 
create_package("path/to/name").

☑ Create R files with use_r("file-name").

• Follow the tidyverse style guide at style.tidyverse.org

• Click on a function and press F2 to go to its definition

• Find a function or file with Ctrl + .

folder R/

Workflow

Edit code

load_all() test()

Run code

Edit tests

document()

check()

git commit 
git push

?fun

Edit roxygen

There are multiple packages useful to package development,
including usethis which handily automates many of the more
repetitive tasks. Install and load devtools, which wraps together
several of these packages to access everything in one step.

• load_all() (Ctrl/Cmd + Shift + L) — Load code

• document() (Ctrl/Cmd + Shift + D) — Rebuild docs and NAMESPACE

• test() (Ctrl/Cmd + Shift + T) — Run tests

• check() (Ctrl/Cmd + Shift + E) — Check complete package

package-name
 DESCRIPTION

 NAMESPACE

folder R/

folder tests/

folder man/

folder vignettes/

folder data/

Import packages that your
package requires to work. R
will install them when it installs
your package.

use_package(x, type = "imports")

Suggest packages that
developers of your package
need. Users can install or not,
as they like.

use_package(x, type = "suggests")

Getting Started

if (interactive()) {

require("devtools", quietly = TRUE)

automatically attaches usethis

}

Having problems with git? Get a situation report with git_sitrep().

Verify your code is correct

Include datasets in your package

Document your code and write 
tutorials and how-tos

Write R code for your package

Set up metadata and organize 
package functions

Package name

Only letters, numbers and periods.
Must start with a letter.
It cannot end with a period.
No hyphens or underscores.
Use the available::available() function to try ideas.

8

Package code is different

The DESCRIPTION file is the principal way to declare
dependencies; we don’t do this via
library(somepackage).
Be explicit about which functions are user-facing and
which are internal helpers. By default, functions are not
exported.

9

Exercise: Start on a package

We will create a package that doubles numbers.
1 Create a new folder with package name and setup project

file.
2 Create package skeleton

create_package()

10

Workflow

11

Workflow shortcuts

install() : Ctrl-Shift-B
load_all() : Ctrl-Shift-L
document() : Ctrl-Shift-D
check() : Ctrl-Shift-E
test() : Ctrl-Shift-T

12

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 13

DESCRIPTION file

Package: doubler
Title: This package doubles numbers
Version: 0.0.0.9000
Authors@R:

person("Rob", "Hyndman", , "Rob.Hyndman@monash.edu", role = c("aut", "cre"))
Description: Whether the input is real, complex or character, this will double it.
License: GPL (>= 3)
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1
Suggests:

testthat (>= 3.0.0)
Config/testthat/edition: 3

14

DESCRIPTION file

Title: one line description. Plain text, title case, no more
than 65 characters.
Description: Several sentences, one paragraph. 80
characters per line, 4 space indentation. Don’t include the
package name in the Title or Description. Do not start
with “This package does. . . ”
Author: Use Authors@R with person() for each author.
Version. Major.Minor.Patch.9000. The 9000 is a
placeholder for development versions.
License: GPL-3 or MIT are common.

15

DESCRIPTION file

Depends: packages that are attached with your package.
(Not needed for most packages.)
Imports: packages that are used in your package. (Refer
to functions using pkg::fun().)
Suggests: packages that are used in your package, but not
required. (E.g., in tests or examples.)
LazyData: true prevents users having to use data().

16

DESCRIPTION file

Functions to help with the DESCRIPTION file:

use_github() or use_github_links(): set the GitHub
repository, URL and BugReports.
use_mit_license(): set the license to MIT.
use_gpl3_license(): set the license to GPL-3.
use_package(): Add package to Imports or Suggests.
use_data(): Add data to your package.
use_tidy_description(): Clean up the DESCRIPTION file.

17

NAMESPACE file

Generated by roxygen2, so don’t edit by hand.
export(): export a function (including S3 and S4
generics).
S3method(): export an S3 method.
importFrom(): import selected object from another
namespace (including S4 generics).
import(): import all objects from another package’s
namespace.
useDynLib(): registers routines from a DLL (this is specific
to packages with compiled code).

18

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 19

Documenting the package
use_package_doc()

20

Documenting functions

Add roxygen2 comments to your .R files
▶ RStudio menu: Code > Insert roxygen skeleton (while cursor

is within function)
▶ Or use Github Copilot (in RStudio or VS-Code)
▶ Or write them by hand

Then use document() to generate the Rd files and the
NAMESPACE file. (Or press Ctrl+Shift+D in RStudio.)
Preview documentation with ?function

21

Documenting functions
#' Title
#'
#' Description
#' More description
#'
#' @param x Description of x
#' @inheritParams fun
#' @returns Description of return value
#' @examples
#' @importFrom pkg fun
#' @import pkg
#' @rdname fun
#' @aliases fun
#' @seealso fun
#' @references Some reference
#' @author Your name
#' @export

22

Documenting data

Put raw data in data-raw/
Code to wrangle data and create objects in data-raw/
use_data(object) to add rda to data/

#' Title
#'
#' Description
#' More description
#'
#' @source Where did you get the data?
#' @format Class, dimensions, or other details
#' @keywords datasets
#' @examples
"object"

23

README.Rmd

1 Describe the high-level purpose of the package.
2 A simple example illustrating package.
3 Installation instructions
4 An overview of the main components of the package.

Like a short vignette
Displayed on the Github repository and the front page of
the pkgdown site.
Create with usethis::use_readme_rmd()
Build with devtools::build_readme()

24

Vignettes

A long-form guide to your package, or an extended
example.

▶ usethis::use_vignette("my-vignette")
▶ Creates a vignettes/ directory.
▶ Adds the necessary dependencies to DESCRIPTION
▶ Drafts a vignette, vignettes/my-vignette.Rmd.
▶ Adds some patterns to .gitignore

25

Vignettes YAML

title: "Vignette Title"
author: Your name
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Vignette Title}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}

26

Vignettes initial code chunks
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"

)
```

```{r setup}
library(yourpackage)
```

Any package used in a vignette must be included in
Suggests if not already in Imports.

27

NEWS

List changes in each release that users might care about.
Use usethis::use_news_md() to create a NEWS.md file.

foofy (development version)

* Better error message when grooving an invalid grobble (#206).

foofy 1.0.0

Major changes

* Can now work with all grooveable grobbles!

Minor improvements and bug fixes

* Printing scrobbles no longer errors (@githubusername, #100).

* Wibbles are now 55% less jibbly (#200). 28

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 29

testthat v3

usethis::use_testthat()
▶ Create a tests/testthat/ directory.
▶ Add testthat to the Suggests field in DESCRIPTION and specify

testthat 3e in the Config/testthat/edition field.
▶ Create a file tests/testthat.R that runs all your tests when

check() runs.
Every exported function should have tests.
usethis::use_test("some_tests.R") creates a test file
for a function or group of functions.
Each R file should match a test file.

30

testthat v3

Test files live in tests/testthat/ and are named
test-*.R.
Each test file should test one function or a small group of
related functions.
Useful testing functions:

▶ expect_equal(), expect_identical(), expect_true(),
expect_false()

▶ expect_error(), expect_warning(), expect_message()
test() runs all tests.

31

What to test

Focus on testing the exported functions.
Strive to test each behaviour in one and only one test.
Avoid testing simple code that you’re confident will work.
Always write a test when you discover a bug.
The test-first philosophy: always start by writing the tests,
and then write the code that makes them pass.
Use devtools::test_coverage() to see which parts of
your package are tested.

32

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 33

pkgdown websites

usethis::use_pkgdown()
▶ Creates _pkgdown.yml to configure site.
▶ Updates .Rbuildignore
▶ Adds docs to .gitignore

pkgdown::build_site() to build the site.
usethis::use_pkgdown_github_pages() to publish the
site via GitHub Actions and GitHub Pages.
Make a hex sticker with the hexSticker package.
Add it using usethis::use_logo().

34

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 35

Github Actions
Some development tasks can be executed automatically
on Github with a trigger (e.g., a push)
Run R CMD check:
usethis::use_github_action("check_standard")
Compute test coverage:
usethis::use_github_action("test-coverage")
Build and deploy pkgdown site:
usethis::use_github_action("pkgdown")
The .github/workflows/ directory contains action files.
See https://github.com/r-lib/actions/ for more
examples.

36

https://github.com/r-lib/actions/

Outline

1 Getting started

2 Package metadata

3 Documentation

4 Tests

5 Website

6 Continuous integration

7 Exercise 37

Exercise

If you haven’t finished Assignment 1, do it now.

If you have finished Assignment 1, create an R package
that includes remaining_customers as the only function.
Add unit tests, a readme file, and a pkgdown website.

38

	Getting started
	Package metadata
	Documentation
	Tests
	Website
	Continuous integration
	Exercise

