7 Vonash
ETC4500/ETC5450

Advanced R programming

Week 4: Debugging and profiing

Debugging
Styling
Profiling
Efficiency

An incorrect, unexpected, or unintended behaviour of code.

@ Why do we call it a bug?
Why not a mistake? A glitch? An oopsie-daisy?

On September 9, 1947, a real moth was found causing
a malfunction in the Harvard Mark Il computer. This
incident was recorded in the logbook with the note
“First actual case of bug being found.”

Overall debugging strategy

Ask for help

m Ask an LLM (OpenAl, Claude, ...)
m Ask a search engine (Google, Bing, DuckDuckGo, ...)
m Ask the community (Stack Overflow / Posit Community, ...)

Fix it yourself

m Update your software / R packages

m Create a minimal reproducible example

m Explore code to find where the error is

m Create a unit tests with expected behaviour
m Fix and test it

Debugging tools in R

® traceback: prints out the function call stack after an error
occurs; does nothing if there’s no error.

m debug: flags a function for “debug” mode which allows you
to step through execution of a function one line at a time.

®m undebug: removes the “debug” flag from a function.

®m browser: pauses execution of a function and puts the
function in debug mode.

m trace: allows you to insert code into a function at a specific
line number.

® untrace: removes the code inserted by trace.

m recover: allows you to modify the error behaviour so that
you can browse the function call stack after an error occurs.

Traceback

f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) 1(c)
i <- function(d) {

if (!dis.numeric(d)) stop(" d” must be numeric", call. = FALSE)
d + 10

}

> f("all)
Error: “d’ must be numeric + Show Traceback

Rerun with Debug

Traceback

<- function(a) g(a)

<- function(b) h(b)

<- function(c) 1i(c)

<- function(d) {

if (!dis.numeric(d)) stop(" d
d + 10

}

- M@ —h

must be numeric", call. = FALSE)

> f(llall>
Error: “d° must be numeric + Hide Traceback
#® Rerun with Debug
stop(" d® must be numeric", call. = FALSE) at debugging.R#6
. 1(c) at debugging.R#3
. h(b) at debugging.R#2
. g(a) at debugging.R#1
) f("a")

H N W F W

Traceback

<

function(a) g(a)

<- function(b) h(b)

<- function(c) 1(c)

<- function(d) {

if (!dis.numeric(d)) stop(" d
d + 10

- M@ —h

must be numeric", call. = FALSE)

}

f(llall)
#> Error: “d° must be numeric
traceback()

#> 5: stop("°d

must be numeric", call. = FALSE) at debugging.R#6

#> 4: i(c) at debugging.R#3
#> 3: h(b) at debugging.R#2
#> 2: g(a) at debugging.R#1
#> 1: f("a")

Interactive debugging

m Using browser ()

i <= function(d) {
browser ()
if (!is.numeric(d)) stop(" d” must be numeric", call. = FALSE)

d + 10
h;

m Setting breakpoints

» Similar to browser () but no change to source code.
» Set in RStudio by clicking to left of line number, or pressing
Shift+Fo.

B options(error = browser)

Interactive debugging

Debugging commands:

n: Next line (step over).

s: Step into function.

c: Continue to next breakpoint.

f: Finish the current function.

Q: Quit debugging.

Bl where: Show the call stack.

help: Help with these debugging commands.

Interactive debugging

®m debug() : inserts a browser () statement at start of
function.

B undebug() : removes browser () statement.

®m debugonce() : Same as debug(), but removes browser ()
after first run.

Let's fix a real, unsolved bug.
#tmitchelloharawild/distributional/issues/133

distributional::dist_normal() * 2
#> Error in .mapply(get(op), Llist(x = vec_data(x), y = y)): argument "MoreArgs" is n

https://github.com/mitchelloharawild/distributional/issues/133

The debugging workflow

Create a reprex that demonstrates the problem as a
comment in the issue.

Fix the problem in the package code.

Add a comment to the issue explaining the bug and the
fix, including a link to the commit containing the fix.

Add unit test(s) to the package that confirms the problem
is fixed.

Close the issue.

What's wrong with this code?

Multivariate scaling function
mvscale <- function(object) {
Remove centers
mat <- sweep(object, 2L, colMeans(object))
Scale and rotate
<- var(mat)
<- chol(solve(S))
<- mat %x*% t(U)
Return orthogonalized data
return(z)
}

mvscale(mtcars)

= N C 0 #H*

Error in mat %*% t(U): requires numeric/complex matrix/vector arguments

https://posit.co/resources/videos/debugging-techniques-in-rstudio-2/

Common error messages

could not find function "xxxx"

object xxxx not found

cannot open the connection / No such file or directory
missing value where TRUE / FALSE needed
unexpected = in "xxxx"

attempt to apply non-function

undefined columns selected

subscript out of bounds

object of type ‘closure’ is not subsettable

$ operator is invalid for atomic vectors

list object cannot be coerced to type ‘double’
arguments imply differing number of rows
non-numeric argument to binary operator

Common warning messages

NAs introduced by coercion

replacement has xx rows to replace yy rows

number of items to replace is not a multiple of replacement length
the condition has length > 1 and only the first element will be used
longer object length is not a multiple of shorter object length

m
m
m
m
m
m package is not available for R version xx

Asking for help

To get useful help, it is important that you ask a good
question. Consider answering these two equivalent questions,
which is easier to understand and why?

Asking for help

! urgent help needed with assignment error

My code doesn’t work. Please help i need it working for my
assignment asap!

data <- read.csv(“C://Users/James/Downloads/project-a9j-
2020a/files/survey_data.csv”) data %>% filter(y == “A”) %>%
ggplot(aes(y = y, x = temperature)) + geom_line()

Asking for help

@ Error with dplyr filter(): “object not found”

I'm trying to filter a dataset in dplyr, but I'm getting an
error that | don't understand. Here's my code and error

message:

survey <- data.frame(x = c(1, 2, 3), y = c("A", "B", "C"))

survey %>% filter(y == "A")

Error: Error in filter(y == "A") : object 'y' not
found

| expected it to return rows where y is "A". How should |
fix this?

Minimal reproducible examples

A minimal reproducible example (MRE) is essential for
effectively communicating problems with code.

The process of creating a MRE might also help you resolve the
problem yourself!

Minimal reproducible examples

Minimal
Minimising code and data makes it easier to find the problem.
= Remove unnecessary code
Include as little code as possible to show the problem.
m Use small datasets
Prefer built-in datasets or small example datasets.
m Avoid external dependencies

Remove unused packages or files irrelevant to the

(PR Ry

Minimal reproducible examples

Reproducible
m Required packages

If external packages are needed, include loading the
packages in your MRE.

m Used datasets

If you can’t use built-in datasets, provide a minimal
dataset with data.frame() or dput().

m Set random seeds

If vour problem includes randomisation. include

Minimal reproducible examples

Examples
m Clearly state the issue
Explain what you expect versus what happens.
m Ensure clarity

Add code comments to highlight your intention and the
problem.

The reprex package helps create minimal reproducible
examples.

m Results are saved to clipboard in form that can be pasted
into a GitHub issue, Stack Overflow question, or email.

m reprex::reprex(): takes R code and outputsitin a
markdown format.

m Append session info with reprex(..., session_info =
TRUE).

m Use the RStudio addin.

reprex as a debugging tool

Creating increasingly minimal reproducible examples can be a
useful debugging tool.

Let's look at this bug:
#tidyverts/fabletools/issues/350

library(fpp3)

us_change %>%
pivot_longer (c(Consumption, Income), names_to = "Time Series") %>%
autoplot(value)

#> Error in “not_tsibble() ™ :

#> ! x is not a tsibble.

https://github.com/tidyverts/fabletools/issues/350

Create a Minimal Reproducible Example (MRE) for this code:

library(tidyverse)
library(rainbow)

survey_data <- read.csv("https://arp.numbat.space/week4/survey_data.csv")
survey_data |>
select(-RespondentID) |>

group_by (Gender) |>
count(Satisfaction)

https://arp.numbat.space/week4/survey_dplyr_bug.R

https://arp.numbat.space/week4/survey_dplyr_bug.R

Non-interactive debugging

m Necessary for debugging code that runs in a
non-interactive environment.

m |Is the global environment different? Have you loaded
different packages? Are objects left from previous
sessions causing differences?

m Is the working directory different?

m Is the PATH environment variable, which determines
where external commands (like git) are found, different?

m Is the R_LIBS environment variable, which determines
where library() looks for packages, different?

Non-interactive debugging

®m dump.frame() saves state of R session to file.

In batch R process —---
dump_and_quit <- function() {
Save debugging info to file last.dump.rda
dump. frames(to.file = TRUE)
Quit R with error status
g(status = 1)
3

options(error = dump_and_quit)
In a later interactive session --——-

load("last.dump.rda")
debugger ()

m Last resort: print(): slow and primitive.

sink() : capture output to file.

options(warn = 2) :turn warnings into errors.

rlang: :with_abort() : turn messages into errors.

If R or RStudio crashes, it is probably a bug in compiled
code.

Post minimal reproducible example to Posit Community
or Stack Overflow.

Styling

Style guides

Tidyverse
https://style.tidyverse.org/
Google

https://google.github.io/styleguide/Rguide.html

https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html

Indentation

m Use 2 spaces per indentation level.

m Add spaces around operators: x <- y + z.

Naming (functions, arguments, objects)

Be brief but descriptive with object names.
Use a consistent naming convention:

m camelCase
m snake_case
m PascalCase

m Modularity: Create re-usable parts for maintainability and
scalability.

m Simplicity: Keep the interface intuitive and easy to use
with straightforward interactions.

m Flexibility: Allow adaptability to different use cases and
user preferences.

m Feedback: Provide clear and timely feedback to inform
users of actions, errors, and system states.

Automatic styling

m styler: https://styler.r-lib.org/
m air: https://posit-dev.github.io/air/

These can be configured to automatically style your code
when you save.

You can also check your code for common problems with lintr.

https://styler.r-lib.org/
https://posit-dev.github.io/air/
https://lintr.r-lib.org/

Profiling

Profiling functions

m Rprof() : records every function call.
®m summaryRprof() : summarises the results.
m profvis() : visualises the results.

Where are the bottlenecks in your code?

library(profvis)
library(bench)
f <- function() {
pause(0.1)
g()
h(

<- function() {
pause(0.1)
h(Q

h <- function() {
pause(0.1)

tmp <- tempfile()
Rprof (tmp, interval = 0.1)

()

Rprof (NULL)
writelLines(readLines(tmp))
#> sample.interval=100000
#> llpausell Ilgll llfll

#> llpausell Ilh" llgll Hfll

#> llpausell Ilhll llfll

source(here: :here("week4/profiling-example.R"))
profvis(f())

[X X) ~/Documents/adv-r/adv-r - master - RStudio Source Editor

2 Profilel

§ B % 43 Publish ~
Flame Graph ~ Data Options v
profiling-exanple.R Memory Time
1 f < function() {
pause(0.1) 80
90 140
hO 80
}
g < function() {
pause(0.1) 70
h() 70
}
h < function() {
1 pause(0.1) 150
pause
pause h pause
pause g h
T T T T T T ™
o 50 100 150 200 250 300
300ms

Sample Interval: 10ms

Microbenchmarking

system.time()

X <= rnorm(le6)
system.time(min(x))

user system elapsed
0.001 0.000 0.001

system.time(sort(x)[1])

user system elapsed
0.043 0.004 0.047

system.time(x[order(x)[1]])

user system elapsed
0.035 0.000 0.035

Microbenchmarking

bench: :mark()

bench: :mark(

N

min(x),
sort(x)[1],
x[order(x)[1]]

A tibble: 3 x 6

expression min median ~itr/sec” mem_alloc
<bch:expr> <bch:tm> <bch:tm> <db1l> <bch:byt>
min(x) 853.6us 868.7us 1105. OB
sort(x)[1] 50.5ms 51.3ms 19.4 11.44MB
x[order(x)[1]] 34.6ms 38ms 26.6 3.81MB

“gc/sec”
<db1>

11.7
2.05

Microbenchmarking

m mem_alloc tells you the memory allocated in the first run.

m n_gc tells you the total number of garbage collections
over all runs.

®m n_itr tells you how many times the expression was
evaluated.

m Pay attention to the units!

What's the fastest way to compute a square root?
Compare:

» sqrt(x)
» x"0.5
» exp(log(x) / 2)

Use system.time() find the time for each operation.

Repeat using bench: :mark (). Why are they different?

Efficiency

m Vectorization is the process of converting a repeated
operation into a vector operation.

m The loops in a vectorized function are implemented in C
instead of R.

m Using map() or apply() is not vectorization.

m Matrix operations are vectorized, and usually very fast.

: : : : 1 :
Write the following algorithm to estimate /0 x2dx using
vectorized code

Monte Carlo Integration

| Initialise: hits = ©

m foriin 1:N
» Generate two random numbers, U,, U,, between 0 and 1
» If Uy < U2, then hits = hits + 1

end for
m Area estimate = hits/N

Use bench: :mark() to compare the speed of sq() and

memo_sq ().

	Debugging
	Styling
	Profiling
	Efficiency

