
1

ETC4500/ETC5450
Advanced R programming

Week 4: Debugging and profiing

Outline

1 Debugging

2 Styling

3 Profiling

4 Efficiency

2

Outline

1 Debugging

2 Styling

3 Profiling

4 Efficiency

3

What’s a bug?

An incorrect, unexpected, or unintended behaviour of code.

� Why do we call it a bug?

Why not a mistake? A glitch? An oopsie-daisy?

4

What’s a bug?
On September 9, 1947, a real moth was found causing
a malfunction in the Harvard Mark II computer. This
incident was recorded in the logbook with the note
“First actual case of bug being found.”

5

Overall debugging strategy

Ask for help

Ask an LLM (OpenAI, Claude, . . .)
Ask a search engine (Google, Bing, DuckDuckGo, . . .)
Ask the community (Stack Overflow / Posit Community, . . .)

Fix it yourself

Update your software / R packages
Create a minimal reproducible example
Explore code to find where the error is
Create a unit tests with expected behaviour
Fix and test it 6

Debugging tools in R

traceback: prints out the function call stack after an error
occurs; does nothing if there’s no error.
debug: flags a function for “debug” mode which allows you
to step through execution of a function one line at a time.
undebug: removes the “debug” flag from a function.
browser: pauses execution of a function and puts the
function in debug mode.
trace: allows you to insert code into a function at a specific
line number.
untrace: removes the code inserted by trace.
recover: allows you to modify the error behaviour so that
you can browse the function call stack after an error occurs.

7

Traceback
f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) {
if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
d + 10

}

f("a")
#> Error: `d` must be numeric
traceback()
#> 5: stop("`d` must be numeric", call. = FALSE) at debugging.R#6
#> 4: i(c) at debugging.R#3
#> 3: h(b) at debugging.R#2
#> 2: g(a) at debugging.R#1
#> 1: f("a")

8

Traceback
f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) {
if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
d + 10

}

f("a")
#> Error: `d` must be numeric
traceback()
#> 5: stop("`d` must be numeric", call. = FALSE) at debugging.R#6
#> 4: i(c) at debugging.R#3
#> 3: h(b) at debugging.R#2
#> 2: g(a) at debugging.R#1
#> 1: f("a")

8

Traceback
f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) {
if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
d + 10

}

f("a")
#> Error: `d` must be numeric
traceback()
#> 5: stop("`d` must be numeric", call. = FALSE) at debugging.R#6
#> 4: i(c) at debugging.R#3
#> 3: h(b) at debugging.R#2
#> 2: g(a) at debugging.R#1
#> 1: f("a")

8

Interactive debugging

Using browser()
i <- function(d) {

browser()
if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
d + 10

}

Setting breakpoints
▶ Similar to browser() but no change to source code.
▶ Set in RStudio by clicking to left of line number, or pressing

Shift+F9.

options(error = browser)

9

Interactive debugging

Debugging commands:
1 n: Next line (step over).
2 s: Step into function.
3 c: Continue to next breakpoint.
4 f: Finish the current function.
5 Q: Quit debugging.
6 where: Show the call stack.
7 help: Help with these debugging commands.

10

Interactive debugging

debug() : inserts a browser() statement at start of
function.
undebug() : removes browser() statement.
debugonce() : same as debug(), but removes browser()
after first run.

11

Demo

Let’s fix a real, unsolved bug.

#mitchelloharawild/distributional/issues/133
distributional::dist_normal() * 2
#> Error in .mapply(get(op), list(x = vec_data(x), y = y)): argument "MoreArgs" is missing, with no default

12

https://github.com/mitchelloharawild/distributional/issues/133

The debugging workflow

1 Create a reprex that demonstrates the problem as a
comment in the issue.

2 Fix the problem in the package code.
3 Add a comment to the issue explaining the bug and the

fix, including a link to the commit containing the fix.
4 Add unit test(s) to the package that confirms the problem

is fixed.
5 Close the issue.

13

Exercises

1 What’s wrong with this code?
Multivariate scaling function
mvscale <- function(object) {

Remove centers
mat <- sweep(object, 2L, colMeans(object))
Scale and rotate
S <- var(mat)
U <- chol(solve(S))
z <- mat %*% t(U)
Return orthogonalized data
return(z)

}
mvscale(mtcars)

Error in mat %*% t(U): requires numeric/complex matrix/vector arguments

14

Example

15

https://posit.co/resources/videos/debugging-techniques-in-rstudio-2/

Common error messages

could not find function "xxxx"
object xxxx not found
cannot open the connection / No such file or directory
missing value where TRUE / FALSE needed
unexpected = in "xxxx"
attempt to apply non-function
undefined columns selected
subscript out of bounds
object of type ‘closure’ is not subsettable
$ operator is invalid for atomic vectors
list object cannot be coerced to type ‘double’
arguments imply differing number of rows
non-numeric argument to binary operator

16

Common warning messages

NAs introduced by coercion
replacement has xx rows to replace yy rows
number of items to replace is not a multiple of replacement length
the condition has length > 1 and only the first element will be used
longer object length is not a multiple of shorter object length
package is not available for R version xx

17

Asking for help

To get useful help, it is important that you ask a good
question. Consider answering these two equivalent questions,
which is easier to understand and why?

18

Asking for help

, urgent help needed with assignment error

My code doesn’t work. Please help i need it working for my
assignment asap!
data <- read.csv(“C://Users/James/Downloads/project-a9j-
2020a/files/survey_data.csv”) data %>% filter(y == “A”) %>%
ggplot(aes(y = y, x = temperature)) + geom_line()

19

Asking for help

� Error with dplyr filter(): “object not found”

I’m trying to filter a dataset in dplyr, but I’m getting an
error that I don’t understand. Here’s my code and error
message:
survey <- data.frame(x = c(1, 2, 3), y = c("A", "B", "C"))
survey %>% filter(y == "A")

Error: Error in filter(y == "A") : object 'y' not
found
I expected it to return rows where y is "A". How should I
fix this?

20

Minimal reproducible examples

A minimal reproducible example (MRE) is essential for
effectively communicating problems with code.

The process of creating a MRE might also help you resolve the
problem yourself!

21

Minimal reproducible examples

Minimal

Minimising code and data makes it easier to find the problem.

Remove unnecessary code

Include as little code as possible to show the problem.

Use small datasets

Prefer built-in datasets or small example datasets.

Avoid external dependencies

Remove unused packages or files irrelevant to the
problem. 22

Minimal reproducible examples

Reproducible

Required packages

If external packages are needed, include loading the
packages in your MRE.

Used datasets

If you can’t use built-in datasets, provide a minimal
dataset with data.frame() or dput().

Set random seeds

If your problem includes randomisation, include
set.seed() with appropriate seed.

23

Minimal reproducible examples

Examples

Clearly state the issue

Explain what you expect versus what happens.

Ensure clarity

Add code comments to highlight your intention and the
problem.

24

reprex

The reprex package helps create minimal reproducible
examples.

Results are saved to clipboard in form that can be pasted
into a GitHub issue, Stack Overflow question, or email.
reprex::reprex(): takes R code and outputs it in a
markdown format.
Append session info with reprex(..., session_info =
TRUE).
Use the RStudio addin.

25

reprex as a debugging tool

Creating increasingly minimal reproducible examples can be a
useful debugging tool.

Let’s look at this bug:

#tidyverts/fabletools/issues/350
library(fpp3)
us_change %>%
pivot_longer(c(Consumption, Income), names_to = "Time Series") %>%
autoplot(value)

#> Error in `not_tsibble()`:
#> ! x is not a tsibble.

26

https://github.com/tidyverts/fabletools/issues/350

Exercises

Create a Minimal Reproducible Example (MRE) for this code:
library(tidyverse)
library(rainbow)

survey_data <- read.csv("https://arp.numbat.space/week4/survey_data.csv")

survey_data |>
select(-RespondentID) |>
group_by(Gender) |>
count(Satisfaction)

https://arp.numbat.space/week4/survey_dplyr_bug.R

27

https://arp.numbat.space/week4/survey_dplyr_bug.R

Non-interactive debugging

Necessary for debugging code that runs in a
non-interactive environment.
Is the global environment different? Have you loaded
different packages? Are objects left from previous
sessions causing differences?
Is the working directory different?
Is the PATH environment variable, which determines
where external commands (like git) are found, different?
Is the R_LIBS environment variable, which determines
where library() looks for packages, different?

28

Non-interactive debugging

dump.frame() saves state of R session to file.
In batch R process ----
dump_and_quit <- function() {

Save debugging info to file last.dump.rda
dump.frames(to.file = TRUE)
Quit R with error status
q(status = 1)

}
options(error = dump_and_quit)

In a later interactive session ----
load("last.dump.rda")
debugger()

Last resort: print(): slow and primitive.
29

Other tricks

sink() : capture output to file.
options(warn = 2) : turn warnings into errors.
rlang::with_abort() : turn messages into errors.
If R or RStudio crashes, it is probably a bug in compiled
code.
Post minimal reproducible example to Posit Community
or Stack Overflow.

30

Outline

1 Debugging

2 Styling

3 Profiling

4 Efficiency

31

Style guides

Tidyverse

https://style.tidyverse.org/

Google

https://google.github.io/styleguide/Rguide.html

32

https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html

Indentation

Use 2 spaces per indentation level.

Add spaces around operators: x <- y + z.

33

Naming (functions, arguments, objects)

Be brief but descriptive with object names.

Use a consistent naming convention:

camelCase
snake_case
PascalCase

34

Design

Modularity: Create re-usable parts for maintainability and
scalability.
Simplicity: Keep the interface intuitive and easy to use
with straightforward interactions.
Flexibility: Allow adaptability to different use cases and
user preferences.
Feedback: Provide clear and timely feedback to inform
users of actions, errors, and system states.

35

Automatic styling

styler: https://styler.r-lib.org/
air: https://posit-dev.github.io/air/

These can be configured to automatically style your code
when you save.

You can also check your code for common problems with lintr.

36

https://styler.r-lib.org/
https://posit-dev.github.io/air/
https://lintr.r-lib.org/

Outline

1 Debugging

2 Styling

3 Profiling

4 Efficiency

37

Profiling functions

Rprof() : records every function call.
summaryRprof() : summarises the results.
profvis() : visualises the results.

38

Profiling

Where are the bottlenecks in your code?
library(profvis)
library(bench)
f <- function() {
pause(0.1)
g()
h()

}
g <- function() {
pause(0.1)
h()

}
h <- function() {
pause(0.1)

}

39

Profiling
tmp <- tempfile()
Rprof(tmp, interval = 0.1)
f()
Rprof(NULL)
writeLines(readLines(tmp))
#> sample.interval=100000
#> "pause" "g" "f"
#> "pause" "h" "g" "f"
#> "pause" "h" "f"

40

Profiling
source(here::here("week4/profiling-example.R"))
profvis(f())

41

Microbenchmarking

system.time()
x <- rnorm(1e6)
system.time(min(x))

user system elapsed
0.001 0.000 0.001

system.time(sort(x)[1])

user system elapsed
0.043 0.004 0.047

system.time(x[order(x)[1]])

user system elapsed
0.035 0.000 0.035

42

Microbenchmarking

bench::mark()
bench::mark(
min(x),
sort(x)[1],
x[order(x)[1]]

)
A tibble: 3 x 6
expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>

1 min(x) 853.6us 868.7us 1105. 0B 0
2 sort(x)[1] 50.5ms 51.3ms 19.4 11.44MB 11.7
3 x[order(x)[1]] 34.6ms 38ms 26.6 3.81MB 2.05

43

Microbenchmarking

mem_alloc tells you the memory allocated in the first run.
n_gc tells you the total number of garbage collections
over all runs.
n_itr tells you how many times the expression was
evaluated.
Pay attention to the units!

44

Exercises

2 What’s the fastest way to compute a square root?
Compare:

▶ sqrt(x)
▶ xˆ0.5
▶ exp(log(x) / 2)

Use system.time() find the time for each operation.

Repeat using bench::mark(). Why are they different?

45

Outline

1 Debugging

2 Styling

3 Profiling

4 Efficiency

46

Vectorization

Vectorization is the process of converting a repeated
operation into a vector operation.
The loops in a vectorized function are implemented in C
instead of R.
Using map() or apply() is not vectorization.
Matrix operations are vectorized, and usually very fast.

47

Exercises

Write the following algorithm to estimate
∫ 1

0
x2dx using

vectorized code
Monte Carlo Integration

a. Initialise: hits = 0
b. for i in 1:N

▶ Generate two random numbers, U1, U2, between 0 and 1
▶ If U2 < U2

1 , then hits = hits + 1

c. end for
d. Area estimate = hits/N

48

Exercises

4 Use bench::mark() to compare the speed of sq() and
memo_sq().

49

	Debugging
	Styling
	Profiling
	Efficiency

