
1

ETC4500/ETC5450
AdvancedRprogramming

Week 5: Functional programming

Outline

1 Programming paradigms

2 Functional programming

3 Functional problem solving

2

Outline

1 Programming paradigms

2 Functional programming

3 Functional problem solving

3

Programming paradigms

R code is typically structured using these paradigms:

Functional programming
Object-oriented programming
Literate programming
Reactive programming

Often several paradigms used together to solve a problem.

4

Programming paradigms

Functional programming (W5; today!)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Literate programming (W6)

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

5

Programming paradigms

Functional programming (W5; today!)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Literate programming (W6)

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

5

Programming paradigms

Reactive programming (W7)

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.

Object-oriented programming (W8 - W9)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

6

Programming paradigms

Reactive programming (W7)

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.

Object-oriented programming (W8 - W9)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

6

Outline

1 Programming paradigms

2 Functional programming

3 Functional problem solving

7

Functional programming

R is commonly considered a ‘functional’ programming
language - and so far we have used functional programming.
square <- function(x) {
return(xˆ2)

}
square(8)

[1] 64

The square function is an object like any other in R.

8

Functions are objects

R functions can be printed,
print(square)

function (x)
{

return(x^2)
}

inspected,
formals(square)

$x

9

Functions are objects

R functions can be printed,
print(square)

function (x)
{

return(x^2)
}

inspected,
formals(square)

$x

9

Functions are objects

put in a list,
my_functions <- list(square, sum, min, max)
my_functions

[[1]]
function (x)
{

return(x^2)
}

[[2]]
function (..., na.rm = FALSE) .Primitive("sum")

[[3]]
function (..., na.rm = FALSE) .Primitive("min")

[[4]]
function (..., na.rm = FALSE) .Primitive("max") 10

Functions are objects

used within lists,
my_functions[[1]](8)

[1] 64

but they can’t be subsetted!
square$x

Error in square$x: object of type 'closure' is not subsettable

11

Functions are objects

used within lists,
my_functions[[1]](8)

[1] 64

but they can’t be subsetted!
square$x

Error in square$x: object of type 'closure' is not subsettable

11

Handling input types

Functional programming handles different input types using
control flow. The same code is ran regardless of object type.
square <- function(x) {
if(!is.numeric(x)) {
stop("`x` needs to be numeric")

}
return(xˆ2)

}

� Later in the semester. . .

We will see object-oriented programming, which handles
different input types using different functions (methods)!

12

Handling input types

Functional programming handles different input types using
control flow. The same code is ran regardless of object type.
square <- function(x) {
if(!is.numeric(x)) {
stop("`x` needs to be numeric")

}
return(xˆ2)

}

� Later in the semester. . .

We will see object-oriented programming, which handles
different input types using different functions (methods)!

12

What are functions?

A function is comprised of three components:

The arguments/inputs (formals())
The body/code (body())
The environment (environment())

\ Your turn!

Use these functions to take a closer look at square().
Try modifying the function’s formals/body/env with <-.

13

What are functions?

A function is comprised of three components:

The arguments/inputs (formals())
The body/code (body())
The environment (environment())

\ Your turn!

Use these functions to take a closer look at square().
Try modifying the function’s formals/body/env with <-.

13

Functional programming

Since functions are like any other object, they can also be:

inputs to functions

� Extensible design with function inputs

Using function inputs can improve your package’s design!
Rather than limiting users to a few specific methods, allow
them to use and write any method with functions.

14

Function arguments

Consider a function which calculates accuracy measures:
accuracy <- function(e, measure, ...) {
if (measure == "mae") {
mean(abs(e), ...)

} else if (measure == "rmse") {
sqrt(mean(eˆ2, ...))

} else {
stop("Unknown accuracy measure")

}
}

� Improving the design

This function is limited to only computing MAE and RMSE.
15

Function arguments

Using function operators allows any measure to be used.
MAE <- function(e, ...) mean(abs(e), ...)
RMSE <- function(e, ...) sqrt(mean(eˆ2, ...))
accuracy <- function(e, measure, ...) {
???

}
accuracy(rnorm(100), measure = RMSE)

\ Your turn!

Complete the accuracy function to calculate accuracy statis-
tics based on the function passed in to measure.

16

Functional programming

Since functions are like any other object, they can also be:

inputs to functions

outputs of functions

� Functions making functions?

These functions are known as function factories.
Where have you seen a function that creates a function?

17

Function factories

Let’s generalise square() to raise numbers to any power.
power <- function(x, exp) {
xˆexp

}
power(8, exp = 2)

[1] 64
power(8, exp = 3)

[1] 512

� Starting a factory

What if the function returned a function instead?

18

Function factories
power_factory <- function(exp) {
R is lazy and won't look at exp unless we ask it to
force(exp)
Return a function, which finds exp from this environment
function(x) {
xˆexp

}
}
square <- power_factory(exp = 2)
square(8)

[1] 64

cube <- power_factory(exp = 3)
cube(8)

[1] 512

19

Function factories
power_factory <- function(exp) {
R is lazy and won't look at exp unless we ask it to
force(exp)
Return a function, which finds exp from this environment
function(x) {
xˆexp

}
}
square <- power_factory(exp = 2)
square(8)

[1] 64
cube <- power_factory(exp = 3)
cube(8)

[1] 512

19

Function factories

Consider this function to calculate plot breakpoints of vectors.
breakpoints <- function(x, n.breaks) {
seq(min(x), max(x), length.out = n.breaks)

}

\ Your turn!

Convert this function into a function factory.
Is it better to create functions via x or n.breaks?

20

Outline

1 Programming paradigms

2 Functional programming

3 Functional problem solving

21

Split, apply, combine

Many problems can be simplified/solved using this process:

split (break the problem into smaller parts)
apply (solve the smaller problems)
combine (join solved parts to solve original problem)

This technique applies to both

writing functions (rewriting a function into sub-functions)
working with data (same function across groups or files)

22

Split, apply, combine

Many problems can be simplified/solved using this process:

split (break the problem into smaller parts)
apply (solve the smaller problems)
combine (join solved parts to solve original problem)

This technique applies to both

writing functions (rewriting a function into sub-functions)
working with data (same function across groups or files)

22

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by() and summarise() are used together.

split: group_by() splits up the data into groups
apply: your summarise() code calculates a single value
combine: summarise() combines the results into a vector

library(dplyr)
mtcars |>

group_by(cyl) |>
summarise(mean(mpg))

A tibble: 3 x 2
cyl `mean(mpg)`

<dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

23

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by() and summarise() are used together.

split: group_by() splits up the data into groups
apply: your summarise() code calculates a single value
combine: summarise() combines the results into a vector

library(dplyr)
mtcars |>

group_by(cyl) |>
summarise(mean(mpg))

A tibble: 3 x 2
cyl `mean(mpg)`

<dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

23

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by() and summarise() are used together.

split: group_by() splits up the data into groups
apply: your summarise() code calculates a single value
combine: summarise() combines the results into a vector

library(dplyr)
mtcars |>

group_by(cyl) |>
summarise(mean(mpg))

A tibble: 3 x 2
cyl `mean(mpg)`

<dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

23

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

base R: The *apply() functions
purrr: The map*() functions

We will use purrr and but I’ll also share the base R equivalent.

24

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

base R: The *apply() functions
purrr: The map*() functions

We will use purrr and but I’ll also share the base R equivalent.

24

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

base R: The *apply() functions
purrr: The map*() functions

We will use purrr and but I’ll also share the base R equivalent.

24

for or map?

Let’s square() a vector of numbers with a for loop.
x <- c(1, 3, 8)
x2 <- numeric(length(x))
for (i in seq_along(x)) {
x2[i] <- square(x[i])

}
x2

[1] 1 9 64

� Vectorisation?

Of course square() is vectorised, so we should use square(x).
Other functions like lm() or read.csv() are not!

25

for or map?

Let’s square() a vector of numbers with a for loop.
x <- c(1, 3, 8)
x2 <- numeric(length(x))
for (i in seq_along(x)) {
x2[i] <- square(x[i])

}
x2

[1] 1 9 64

� Vectorisation?

Of course square() is vectorised, so we should use square(x).
Other functions like lm() or read.csv() are not!

25

for or map?

Instead using map() we get. . .
library(purrr)
x <- c(1, 3, 8)
map(x, square) # lapply(x, square)

[[1]]
[1] 1

[[2]]
[1] 9

[[3]]
[1] 64

26

Mapping vectors

The same result, but it has been combined differently!

27

Mapping vectors

To combine the results into a vector rather than a list, we
instead use map_vec() to combine results into a vector.
library(purrr)
x <- c(1, 3, 8)
map_vec(x, square) # vapply(x, square, numeric(1L))

[1] 1 9 64

28

for or map

� Advantages of map

Less coding (less bugs!)
Easier to read and understand.

, Disadvantages of map

Less control over loop
Cannot solve sequential problems

29

for or map

� Advantages of map

Less coding (less bugs!)
Easier to read and understand.

, Disadvantages of map

Less control over loop
Cannot solve sequential problems

29

Functional mapping

Recall group_by() and summarise() from dplyr:
mtcars |>
group_by(cyl) |>
summarise(mean(mpg))

\ Your turn!

Use split() and map_vec() to achieve a similar result.
Hint: split(mtcars$mpg, mtcars$cyl) creates a list that
splits mtcars$mpg by each value of mtcars$cyl.

30

Anonymous mapper functions

Suppose we want to separately model mpg for each cyl.
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 4,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 6,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 8,])

31

Anonymous mapper functions

We can split the data by cyl with split(),
mtcars_cyl <- split(mtcars, mtcars$cyl)

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won’t work - why?

, Difficult to map

Using map(mtcars_cyl, lm) will apply lm(mtcars_cyl[i]).
The mapped vector is always used as the first argument!

32

Anonymous mapper functions

We can split the data by cyl with split(),
mtcars_cyl <- split(mtcars, mtcars$cyl)

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won’t work - why?

, Difficult to map

Using map(mtcars_cyl, lm) will apply lm(mtcars_cyl[i]).
The mapped vector is always used as the first argument!

32

Anonymous mapper functions

We can write our own functions!
mtcars_lm <- function(.) lm(mpg ~ disp + hp + drat + wt, data = .)
map(mtcars_cyl, mtcars_lm)

$`4`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

52.5195 -0.0629 -0.0760 -1.4422 -3.1001

$`6`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

15.12328 0.04363 0.00252 2.43188 -3.98026

$`8`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

2.68e+01 6.59e-05 -1.35e-02 -4.53e-02 -2.19e+00

33

Anonymous mapper functions

Or use ~ body to create anonymous functions.
lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
map(mtcars_cyl, ~ lm(mpg ~ disp + hp + drat + wt, data = .))

$`4`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

52.5195 -0.0629 -0.0760 -1.4422 -3.1001

$`6`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

15.12328 0.04363 0.00252 2.43188 -3.98026

$`8`

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt

2.68e+01 6.59e-05 -1.35e-02 -4.53e-02 -2.19e+00

34

Mapping mapping mapping

How would you then get the coefficients from all 3 models?
mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))

� Solution

lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>

map(~ lm(mpg ~ disp + hp + drat + wt, data = .)) |>
map(coef)

$`4`
(Intercept) disp hp drat wt

52.5195 -0.0629 -0.0760 -1.4422 -3.1001

$`6`
(Intercept) disp hp drat wt

15.12328 0.04363 0.00252 2.43188 -3.98026

$`8`
(Intercept) disp hp drat wt

2.68e+01 6.59e-05 -1.35e-02 -4.53e-02 -2.19e+00

35

Mapping mapping mapping

How would you then get the coefficients from all 3 models?
mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))

� Solution

lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .)) |>
map(coef)

$`4`
(Intercept) disp hp drat wt

52.5195 -0.0629 -0.0760 -1.4422 -3.1001

$`6`
(Intercept) disp hp drat wt

15.12328 0.04363 0.00252 2.43188 -3.98026

$`8`
(Intercept) disp hp drat wt

2.68e+01 6.59e-05 -1.35e-02 -4.53e-02 -2.19e+00

35

Mapping arguments

Any arguments after your function are passed to all functions.

36

Mapping arguments

This works by passing through ... to the function.
x <- list(1:5, c(1:10, NA))
map_dbl(x, ~ mean(.x, na.rm = TRUE))

[1] 3.0 5.5
map_dbl(x, mean, na.rm = TRUE)

[1] 3.0 5.5

37

Mapping arguments

These additional arguments are not decomposed / mapped.

38

Mapping multiple arguments

It is often useful to map multiple arguments.

39

Mapping multiple arguments
xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] 0.552 0.637 0.623 0.383 0.662 0.276 0.600 0.544

ws <- map(1:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.529 0.648 0.620 0.364 0.669 0.320 0.582 0.554

40

Mapping multiple arguments
xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] 0.552 0.637 0.623 0.383 0.662 0.276 0.600 0.544
ws <- map(1:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.529 0.648 0.620 0.364 0.669 0.320 0.582 0.554

40

Mapping multiple arguments

41

Mapping many arguments

It is also possible to map any number of inputs with pmap.
n <- 1:3
min <- c(0, 10, 100)
max <- c(1, 100, 1000)
pmap(list(n, min, max), runif) # .mapply(runif, list(n, min, max), list())

[[1]]
[1] 0.234

[[2]]
[1] 87.9 25.3

[[3]]
[1] 859 878 251

42

Mapping many arguments

43

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

The furrr package (future + purrr) makes it easy to use map() in
parallel, providing future_map() variants.
library(furrr)
plan(multisession, workers = 4)
future_map_dbl(xs, mean, na.rm = TRUE)

[1] 0.552 0.637 0.623 0.383 0.662 0.276 0.600 0.544
future_map2_dbl(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.529 0.648 0.620 0.364 0.669 0.320 0.582 0.554

44

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

The furrr package (future + purrr) makes it easy to use map() in
parallel, providing future_map() variants.
library(furrr)
plan(multisession, workers = 4)
future_map_dbl(xs, mean, na.rm = TRUE)

[1] 0.552 0.637 0.623 0.383 0.662 0.276 0.600 0.544
future_map2_dbl(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.529 0.648 0.620 0.364 0.669 0.320 0.582 0.554

44

Reduce vectors to single values

Sometimes you want to collapse a vector, reducing it to a
single value. reduce() always returns a vector of length 1.
x <- sample(1:100, 10)
x

[1] 85 68 49 23 63 28 55 95 32 81
sum(x)

[1] 579
Alternative to sum()
reduce(x, `+`) # Reduce(`+`, x)

[1] 579

45

Reduce vectors to single values

The result from the function is re-used as the first argument.

46

Reduce vectors to single values

\ Your turn!

We’re studying the letters in 3 bowls of alphabet soup.

47

Reduce vectors to single values

\ Your turn!

We’re studying the letters in 3 bowls of alphabet soup.
Use reduce() to find the letters were in all bowls of soup!
Are all letters found in the soups?
alphabet_soup <- map(c(10,24,13), sample, x=letters, replace=TRUE)
alphabet_soup

[[1]]
[1] "h" "r" "f" "o" "o" "c" "d" "q" "v" "z"

[[2]]
[1] "t" "d" "g" "e" "d" "n" "w" "y" "h" "n" "e" "v" "t" "f" "n" "g" "h"

[18] "a" "i" "x" "w" "k" "t" "z"

[[3]]
[1] "z" "w" "f" "b" "b" "y" "t" "v" "o" "w" "h" "t" "b"

48

Functional adverbs

purrr also offers many adverbs, which modify a function.

Capturing conditions

possibly(.f, otherwise): If the function errors, it
will return otherwise instead.
safely(.f): The function now returns a list with
‘result’ and ‘error’, preventing errors.
quietly(.f): Any conditions (messages, warnings,
printed output) are now captured into a list.

49

Functional adverbs

purrr also offers many adverbs, which modify a function.

Changing results

negate(.f) will return !result.

Chaining functions

compose(...) will chain functions together like a
chain of piped functions.

50

Functional adverbs

purrr also offers many adverbs, which modify a function.

� Functions modifying functions?

These functions are all function factories!
More specifically they are known as function operators
since both the input and output is a function.
memoise::memoise() is also a function operator.

51

	Programming paradigms
	Functional programming
	Functional problem solving

