M ORARH SUSINESS
University SCHOOL

ETC4500/ETC5450
Advanced R programming

Week 5: Reproducible environments and
functional programming

arp.numbat.space

https://arp.numbat.space

Assignments
Reproducible environments
Programming paradigms

Functional programming

Functional problem solving

Assignments

m Keep working on your package!
m Final version due on 31 May 2024

m About debugging and profiling
m Available on GitHub Classroom today!
m Due 19 April 2024

Reproducible environments

Reproducible environments

m To ensure that your code runs the same way on different
machines and at different times, you need the computing

environment to be the same.
Operating system
System components
R version
R packages
m Solutions for 1-4: Docker, Singularity, containerit, rang

m Solutions for 4: packrat, checkpoint, renv

init() snapshot()
— /—\
system project status()
library library -— > |lockfile
_/
T restore()

install() renv
update() cache

T your computer

! theinternet

CRAN/
GitHub/...

® renv::init() : initialize a new project with a new
environment. Adds:
» renv/library contains all packages used in project

» renv.lock contains metadata about packages used in project
» .Rprofile run every time R starts.

B renv::snapshot() : save the state of the project to
renv. lock.

B renv::restore() : restore the project to the state saved
in renv. lock.

m renv uses a package cache so you are not repeatedly
installing the same packages in multiple projects.

B renv::install() can install from CRAN, Bioconductor,
GitHub, Gitlab, Bitbucket, etc.

® renv::update() gets latest versions of all dependencies
from wherever they were installed from.

m Only R packages are supported, not system dependencies,

and not R itself.

renv is not a replacement for Docker or Singularity.

B renv::deactivate(clean = TRUE) will remove the renv
environment.

10

Add renv to your Assignment 1 project. Make sure the
packages included are the latest CRAN versions of all
packages.

1

Programming paradigms

12

Programming paradigms

R code is typically structured using these paradigms:

m Functional programming

m Object-oriented programming
m Literate programming

m Reactive programming

Often several paradigms used together to solve a problem.

13

Programming paradigms

Functional programming (W5; today!)

m Functions are created and used like any other object.
m Output should only depend on the function’s inputs.

14

Programming paradigms

Functional programming (W5; today!)

m Functions are created and used like any other object.
m Output should only depend on the function’s inputs.

Object-oriented programming (W6)

m Functions are associated with object types.
m Methods of the same ‘function’ produce
object-specific output.

14

Programming paradigms

Literate programming (W?7)

m Natural language is interspersed with code.
m Aimed at prioritising documentation/comments.
m Now used to create reproducible reports/documents.

15

Programming paradigms

Literate programming (W?7)

m Natural language is interspersed with code.
m Aimed at prioritising documentation/comments.
m Now used to create reproducible reports/documents.

Reactive programming (W?7)

m Objects are expressed using code based on inputs.
m When inputs change, the object’s value updates.

15

Functional programming

16

Functional programming

R is commonly considered a ‘functional’ programming
language - and so far we have used functional programming.

square <- function(x) {
return(x”2)

}

square(8)

[1] 64

The square function is an object like any other in R.

17

Functions are objects

R functions can be printed,

print(square)

function(x) {

return(x”2)

18

Functions are objects

R functions can be printed,

print(square)

function(x) {
return(x”2)

h

inspected,

formals(square)

$x

18

Functions are objects

putin a list,

my_functions <- list(square, sum, min, max)
my_functions

[[1]]
function(x) {
return(x”2)

}

[[2]1]

function (..., na.rm = FALSE) .Primitive("sum"

[[31]

function (..., na.rm = FALSE) .Primitive("min")

[[4]] 9

Y T L Y T T T e P L T Y 2 T B I

Functions are objects

used within lists,

my_functions[[1]](8)

[1] 64

20

Functions are objects

used within lists,

my_functions[[1]](8)

[1] 64

but they can’t be subsetted!

squaresx

Error in square$x: object of type 'closure' is not subsettable

20

Handling input types

Functional programming handles different input types using
control flow. The same code is ran regardless of object type.

square <- function(x) {
if(ldis.numeric(x)) {
stop (" x~ needs to be numeric'")
}
return(x”"2)

}

21

Handling input types

Functional programming handles different input types using
control flow. The same code is ran regardless of object type.

square <- function(x) {
if(lis.numeric(x)) {
stop (" x~ needs to be numeric'")
}
return(x”"2)

}

@ Next class...

We will see object-oriented programming, which handles
different input types using different functions (methods)!

21

What are functions?

A function is comprised of three components:

m The arguments/inputs (formals())
m The body/code (body())
m The environment (environment())

22

What are functions?

A function is comprised of three components:

m The arguments/inputs (formals())
m The body/code (body())
m The environment (environment())

O Your turn!

Use these functions to take a closer look at square().
Try modifying the function’s formals/body/env with <-.

22

Functional programming

Since functions are like any other object, they can also be:

m inputs to functions

@ Extensible design with function inputs

Using function inputs can improve your package’s design!
Rather than limiting users to a few specific methods, allow
them to use and write any method with functions.

23

Function arguments

Consider a function which calculates accuracy measures:

accuracy <- function(e, measure, ...) {
if (measure == "mae") {
mean(abs(e), ...)
} else if (measure == "rmse") {
sqrt(mean(e”2, ...))
} else {
stop ("Unknown accuracy measure')

@ Improving the design

This function is limited to only computing MAE and RMSE. | 2

Function arguments

Using function operators allows any measure to be used.

MAE <- function(e, ...) mean(abs(e), ...)
RMSE <- function(e, ...) sqrt(mean(e”2, ...))
accuracy <- function(e, measure, ...) {

vy

}

accuracy(rnorm(100), measure = RMSE)

O Your turn!

Complete the accuracy function to calculate accuracy statis-
tics based on the function passed in to measure.

25

Functional programming

Since functions are like any other object, they can also be:
m inputs to functions

m outputs of functions

@ Functions making functions?

These functions are known as function factories.
Where have you seen a function that creates a function?

26

Function factories

Let's generalise square() to raise numbers to any power.

power <- function(x, exp) {
x"exp

}

power (8, exp = 2)

[1] 64

power (8, exp = 3)

[1] 512

@ starting a factory

What if the function returned a function instead?

27

Function factories

power_factory <- function(exp) {
R is lazy and won't look at exp unless we ask it to
force(exp)
Return a function, which finds exp from this environment
function(x) {
x"exp
}
}
square <- power_factory(exp = 2)
square(8)

[1] 64

28

Function factories

power_factory <- function(exp) {
R is lazy and won't look at exp unless we ask it to
force(exp)
Return a function, which finds exp from this environment
function(x) {
x"exp
}
}
square <- power_factory(exp = 2)
square(8)

[1] 64

cube <- power_factory(exp = 3)
cube(8)

[1] 512 28

Function factories

Consider this function to calculate plot breakpoints of vectors.

breakpoints <- function(x, n.breaks) {
seq(min(x), max(x), length.out = n.breaks)

}

O Your turn!

Convert this function into a function factory.
Is it better to create functions via x or n.breaks?

29

Functional problem solving

30

Split, apply, combine

Many problems can be simplified/solved using this process:

m split (break the problem into smaller parts)
m apply (solve the smaller problems)
m combine (join solved parts to solve original problem)

31

Split, apply, combine

Many problems can be simplified/solved using this process:

m split (break the problem into smaller parts)
m apply (solve the smaller problems)
m combine (join solved parts to solve original problem)

This technique applies to both

m writing functions (rewriting a function into sub-functions)
m working with data (same function across groups or files)

31

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by () and summarise() are used together.

32

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by () and summarise() are used together.

m split: group_by () splits up the data into groups
m apply: your summarise() code calculates a single value
m combine: summarise() combines the results into a vector

32

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by () and summarise() are used together.

m split: group_by () splits up the data into groups
m apply: your summarise() code calculates a single value
m combine: summarise() combines the results into a vector

library(dplyr) # A tibble: 3 x 2
mtcars |> cyl “mean(mpg)”
group_by(cyl) |> <db1l> <db1l>
summarise(mean(mpg)) 1 4 26.7
2 6 19.7

8 8 15.1
32

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

33

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.
There are two main implementations we consider:

m base R: The *xapply() functions
m purrr: The map* () functions

33

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.
There are two main implementations we consider:

m base R: The *xapply() functions
m purrr: The map* () functions

We will use purrr and but I'll also share the base R equivalent.

33

for or map?

Let's square() a vector of numbers with a for loop.

x <= c(1, 3, 8)

x2 <= numeric(length(x))

for (i in seq_along(x)) {
x2[1] <= square(x[i])

}

X2

[1] 1 9 64

34

for or map?

Let's square() a vector of numbers with a for loop.

x <= c(1, 3, 8)

x2 <= numeric(length(x))

for (i in seq_along(x)) {
x2[1] <= square(x[i])

}

X2

[1] 1 9 64

@ Vectorisation?

Of course square() is vectorised, so we should use square(x).
Other functions like 1m() or read.csv() are not! w

for or map?

Instead using map () we get...

library(purrr)
x <= c(1, 3, 8)
map(x, square) # lapply(x, square)

(L1]1]
[1] 1

[[2]1]
[1] 9

[[3]1]
[1] 64 »

The same result, but it has been combined differently!

f()

f()

map (,) |:>

f()

f()

36

To combine the results into a vector rather than a list, we

instead use map_vec() to combine results into a vector.

library(purrr)
x <= c(1, 3, 8)
map_vec(x, square) # vapply(x, square, numeric(lL))

[1] 1 9 64

37

for or map

@ Advantages of map

m Less coding (less bugs!)
m Easier to read and understand.

38

for or map

@ Advantages of map

m Less coding (less bugs!)
m Easier to read and understand.

! Disadvantages of map

m Less control over loop
m Cannot solve sequential problems

38

Functional mapping

Recall group_by () and summarise() from dplyr:

mtcars |>

group_by (cyl) |[>
summarise (mean(mpg))

O Your turn!

Use split() and map_vec() to achieve a similar result.
Hint: split(mtcars$Smpg, mtcars$cyl) creates a list that
splits mtcarssmpg by each value of mtcars$cyl.

39

Anonymous mapper functions

Suppose we want to separately model mpg for each cy1.

lm(mpg ~ disp + hp + drat + wt, mtcars[mtcarsScyl == 4,])
Ilm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 6,])
Ilm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 8,])

40

Anonymous mapper functions

We can split the data by cy1 with split(),

mtcars_cyl <- split(mtcars, mtcarsS$cyl)

but map(mtcars_cyl, 1m, mpg ~ disp + hp + drat + wt)
won't work - why?

41

Anonymous mapper functions

We can split the data by cy1 with split(),

mtcars_cyl <- split(mtcars, mtcarsS$cyl)

but map(mtcars_cyl, 1m, mpg ~ disp + hp + drat + wt)
won't work - why?

! Difficult to map

Using map (mtcars_cyl, 1m) will apply Im(mtcars_cyl[i]).
The mapped vector is always used as the first argument!

41

Anonymous mapper functions

We can write our own functions!

mtcars_lm <- function(.) lm(mpg ~ disp + hp + drat + wt, data = .)
map (mtcars_cyl, mtcars_1lm)

$°4°

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt
52.5195 -0.0629 -0.0760 -1.4422 -3.1001

42

Anonymous mapper functions

Or use ~ body to create anonymous functions.

lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
map (mtcars_cyl, ~ lm(mpg ~ disp + hp + drat + wt, data = .))

$°4°

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:
(Intercept) disp hp drat wt
52.5195 -0.0629 -0.0760 -1.4422 -3.1001

43

Mapping mapping mapping

How would you then get the coefficients from all 3 models?

mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))

44

Mapping mapping mapping

How would you then get the coefficients from all 3 models?

mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))

@ Solution

lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map (~ lm(mpg ~ disp + hp + drat + wt, data = .)) |>
map (coef)
$74°
(Intercept) disp hp drat wt Ly
52.5195 -0.0629 -0.0760 -1.4422 -3.1001

Mapping arguments

Any arguments after your function are passed to all functions.

f(,)

f(,)

map (, T,) |:>

f(,)

f(,)

45

Mapping arguments

This works by passing through ... to the function.

x <= list(1:5, c(1:10, NA))
map_dbl(x, ~ mean(.x, na.rm = TRUE))

[1] 3.0 5.5

map_dbl(x, mean, na.rm = TRUE)

[1] 3.0 5.5

46

Mapping arguments

These additional arguments are not decomposed / mapped.

f()

f(

map (, T,) |:>

f(

f(

47

Mapping multiple arguments

It is often useful to map multiple arguments.

f(,)

f(,)

map2 (, ,) |:>

f(,)

f(,)

48

Mapping multiple arguments

Xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] 0.516 0.458 0.478 0.555 0.592 0.422 0.396 0.517

49

Mapping multiple arguments

Xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] 0.516 0.458 0.478 0.555 0.592 0.422 0.396 0.517

ws <- map(l:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.546 0.457 0.455 0.541 0.621 0.391 0.338 0.559

49

Mapping multiple arguments

f(, ,)

f(, ,)
map2 (, , f,) |:>

f(, ,)

f(, ,)

50

Mapping many arguments

It is also possible to map any number of inputs with pmap.
n <- 1:3

min <- c(0, 10, 100)

max <- c(1, 100, 1000)

pmap(list(n, min, max), runif) # .mapply(runif, list(n, min, max), Llist())

[[1]1]
[1] 0.0654

[[2]1]
[1] 27.4 64.3

[[31]
[1] 167 995 733

51

ts
men
ing many argu

in

Mapp

pmap (

f(

f(

f(

f(

52

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

58

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

The furrr package (future + purrr) makes it easy to use map () in

parallel, providing future_map() variants.

library(furrr)
plan(multisession, workers = 4)
future_map_dbl(xs, mean, na.rm = TRUE)

[1] 0.516 0.458 0.478 0.555 0.592 0.422 0.396 0.517

future_map2_dbl(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.546 0.457 0.455 0.541 0.621 0.391 0.338 0.559 53

Reduce vectors to single values

Sometimes you want to collapse a vector, reducing it to a
single value. reduce () always returns a vector of length 1.

X <- sample(1:100, 10)
X

[1] 18 49 60 75 97 30 78 34 65 70
sum(x)
[1] 576

Alternative to sum()
reduce(x, ~+°) # Reduce(+~, x)

[1] 576
54

Reduce vectors to single values

The result from the function is re-used as the first argument.

L]

f(o, ®

reduce(, D) |:> f(®, ®)

|

55

Reduce vectors to single values

O Your turn!

We're studying the letters in 3 bowls of alphabet soup.

56

Reduce vectors to single values

O Your turn!

We're studying the letters in 3 bowls of alphabet soup.
Use reduce() to find the letters were in all bowls of soup!
Are all letters found in the soups?

alphabet_soup <- map(c(10,24,13), sample, x=letters, replace=TRUE)
alphabet_soup

(1]

[l:l llv|| llall llwll llwll llnll ||dll llull llcll "S" l|0||

([2]1]
[l:l ll0|l ll-ill |Imll llell ll-ill |Iall llpll Ilull Ilfll llOII Ilel| IIWII l|t|| IIZU Ilnll l|o|l Ilp||
[18] llj“ llvll llrll llell llle llrll lljll 57

Functional adverbs

purrr also offers many adverbs, which modify a function.

Capturing conditions

m possibly(.f, otherwise): If the function errors, it
will return otherwise instead.

m safely(.f): The function now returns a list with
‘result’ and ‘error’, preventing errors.

m quietly(.f): Any conditions (messages, warnings,
printed output) are now captured into a list.

58

Functional adverbs

purrr also offers many adverbs, which modify a function.

Changing results

®m negate(.f) will return !result.

Chaining functions

®m compose(...) will chain functions together like a
chain of piped functions.

59

Functional adverbs

purrr also offers many adverbs, which modify a function.

@ Functions modifying functions?

These functions are all function factories!

More specifically they are known as function operators
since both the input and output is a function.

memoise: :memoise() IS also a function operator.

60

	Assignments
	Reproducible environments
	Programming paradigms
	Functional programming
	Functional problem solving

