7 Vonash
ETC4500/ETC5450

Advanced R programming

Week 5: Functional programming

Programming paradigms
Functional programming
Functional problem solving

Programming paradigms

Programming paradigms

R code is typically structured using these paradigms:

m Functional programming

m Object-oriented programming
m Literate programming

m Reactive programming

Often several paradigms used together to solve a problem.

Programming paradigms

Functional programming (W5; today!)

m Functions are created and used like any other object.
m Output should only depend on the function’s inputs.

Programming paradigms

Functional programming (W5; today!)

m Functions are created and used like any other object.
m Output should only depend on the function’s inputs.

Literate programming (W6)

m Natural language is interspersed with code.
m Aimed at prioritising documentation/comments.
m Now used to create reproducible reports/documents.

Programming paradigms

Reactive programming (W7)

m Objects are expressed using code based on inputs.
m When inputs change, the object’s value updates.

Programming paradigms

Reactive programming (W7)

m Objects are expressed using code based on inputs.
m When inputs change, the object’s value updates.

Object-oriented programming (W8 - W9)

m Functions are associated with object types.
m Methods of the same ‘function’ produce
object-specific output.

Functional programming

Functional programming

R is commonly considered a ‘functional’ programming
language - and so far we have used functional programming.

square <- function(x) {
return(x”2)

}
square(8)

[1] 64

The square function is an object like any other in R.

Functions are objects

R functions can be printed,

print(square)

function (x)

{

return(x”2)

}

Functions are objects

R functions can be printed,

print(square)

function (x)

{

return(x”2)

}

inspected,

formals(square)

$X

Functions are objects

putin a list,

my_functions <- list(square, sum, min, max)
my_functions

[[1]]

function (x)

{

return(x”2)

}

[[2]1]

function (..., na.rm = FALSE) .Primitive("sum")

[[31]

function (..., na.rm FALSE) .Primitive("min")

Y = T R 4 m~m v, — AL CCN Dimrmmmadm s~ M~ 11N

Functions are objects

used within lists,
my_functions[[1]](8)

[1] 64

Functions are objects

used within lists,
my_functions[[1]](8)

[1] 64

but they can’t be subsetted!

squaresx

Error in square$x: object of type 'closure' 1is not subsettable

Handling input types

Functional programming handles different input types using
control flow. The same code is ran regardless of object type.

square <- function(x) {
if(!is.numeric(x)) {
stop(" X~ needs to be numeric")
}
return(x”"2)

}

Handling input types

Functional programming handles different input types using
control flow. The same code is ran regardless of object type.

square <- function(x) {
if(!is.numeric(x)) {
stop(" X~ needs to be numeric")
}
return(x”"2)

}

@ Later in the semester...

We will see object-oriented programming, which handles
different input types using different functions (methods)!

What are functions?

A function is comprised of three components:

m The arguments/inputs (formals())
m The body/code (body())
m The environment (environment())

What are functions?

A function is comprised of three components:

m The arguments/inputs (formals())
m The body/code (body())
m The environment (environment())

O Your turn!

Use these functions to take a closer look at square().
Try modifying the function’s formals/body/env with <-.

Functional programming

Since functions are like any other object, they can also be:
m inputs to functions

@ Extensible design with function inputs

Using function inputs can improve your package’s design!
Rather than limiting users to a few specific methods, allow
them to use and write any method with functions.

Function arguments

Consider a function which calculates accuracy measures:

accuracy <- function(e, measure, ...) {
if (measure == "mae") {
mean(abs(e), ...)
} else if (measure == "rmse") {
sqrt(mean(e”2, ...))
} else {
stop ("Unknown accuracy measure'")
}
}

@ Improving the design

This function is limited to only computing MAE and RMSE.

Function arguments

Using function operators allows any measure to be used.

MAE <- function(e, ...) mean(abs(e), ...)
RMSE <- function(e, ...) sqrt(mean(e”2, ...))
accuracy <- function(e, measure, ...) {

vy

}

accuracy(rnorm(100), measure = RMSE)

O Your turn!

Complete the accuracy function to calculate accuracy statis-
tics based on the function passed in to measure.

Functional programming

Since functions are like any other object, they can also be:
m inputs to functions

m outputs of functions

@ Functions making functions?

These functions are known as function factories.
Where have you seen a function that creates a function?

Function factories

Let's generalise square() to raise numbers to any power.
power <- function(x, exp) {

x"exp
}

power (8, exp

2)

[1] 64
power (8, exp = 3)

[1] 512

@ starting a factory

What if the function returned a function instead?

Function factories

power_factory <- function(exp) {
R is lazy and won't look at exp unless we ask it to
force(exp)
Return a function, which finds exp from this environment
function(x) {
x"exp
}
}
square <- power_factory(exp = 2)
square(8)

[1] 64

Function factories

power_factory <- function(exp) {
R is lazy and won't look at exp unless we ask it to
force(exp)
Return a function, which finds exp from this environment
function(x) {
x"exp
}
}
square <- power_factory(exp = 2)
square(8)

[1] 64

cube <- power_factory(exp = 3)
cube(8)

[1] 512

Function factories

Consider this function to calculate plot breakpoints of vectors.

breakpoints <- function(x, n.breaks) {
seq(min(x), max(x), length.out = n.breaks)

}

O Your turn!

Convert this function into a function factory.
Is it better to create functions via x or n.breaks?

Functional problem solving

Split, apply, combine

Many problems can be simplified/solved using this process:

m split (break the problem into smaller parts)
m apply (solve the smaller problems)
m combine (join solved parts to solve original problem)

Split, apply, combine

Many problems can be simplified/solved using this process:

m split (break the problem into smaller parts)
m apply (solve the smaller problems)
m combine (join solved parts to solve original problem)

This technique applies to both

m writing functions (rewriting a function into sub-functions)
m working with data (same function across groups or files)

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by () and summarise() are used together.

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by () and summarise() are used together.

m split: group_by () splits up the data into groups
m apply: your summarise() code calculates a single value
m combine: summarise() combines the results into a vector

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with
data is when group_by () and summarise() are used together.

m split: group_by () splits up the data into groups
m apply: your summarise() code calculates a single value
m combine: summarise() combines the results into a vector

library(dplyr) # A tibble: 3 x 2
mtcars |> cyl “mean(mpg)”
group_by(cyl) |> <db1> <db1l>
summarise (mean(mpg)) 1 4 26.7
2 6 19.7

8 8 15.1

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.
There are two main implementations we consider:

m base R: The xapply () functions
m purrr: The map* () functions

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.
There are two main implementations we consider:

m base R: The xapply () functions
m purrr: The map* () functions

We will use purrr and but I'll also share the base R equivalent.

for or map?

Let's square() a vector of numbers with a for loop.

x <= c(1, 3, 8)

x2 <= numeric(length(x))

for (i 1in seq_along(x)) {
x2[1] <= square(x[i])

}

X2

[1] 1 9 64

for or map?

Let's square () a vector of numbers with a for loop.

x <= c(1, 3, 8)

x2 <= numeric(length(x))

for (i 1in seq_along(x)) {
x2[1] <= square(x[i])

}

X2

[1] 1 9 64

@ Vectorisation?

Of course square() is vectorised, so we should use square(x).
Other functions like 1m() or read.csv() are not!

for or map?

Instead using map () we get...
library(purrr)

x <= c(1, 3, 8)

map (x, square) # lapply(x, square)

[[1]1]
[1] 1

[[2]1]
(11 9

[[31]
[1] 64

Mapping vectors

The same result, but it has been combined differently!

f()

f()

map (,) |:>
L]

Mapping vectors

To combine the results into a vector rather than a list, we

instead use map_vec() to combine results into a vector.

library(purrr)
x <= c(1, 3, 8)

map_vec(x, square) # vapply(x, square, numeric(lL))

[1] 1 9 64

for or map

@ Advantages of map

m Less coding (less bugs!)
m Easier to read and understand.

for or map

@ Advantages of map

m Less coding (less bugs!)
m Easier to read and understand.

! Disadvantages of map

m Less control over loop
m Cannot solve sequential problems

Functional mapping

Recall group_by () and summarise() from dplyr:

mtcars |>

group_by(cyl) |>
summar-ise (mean(mpg))

O Your turn!

Use split() and map_vec() to achieve a similar result.
Hint: split(mtcars$Smpg, mtcars$cyl) creates a list that
splits mtcarssmpg by each value of mtcarsscyl.

Anonymous mapper functions

Suppose we want to separately model mpg for each cy1.
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcarsscyl == 4,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcarsScyl == 6,])
Ilm(mpg ~ disp + hp + drat + wt, mtcars[mtcarsS$cyl == 8,])

Anonymous mapper functions

We can split the data by cy1 with split(),

mtcars_cyl <- split(mtcars, mtcarss$cyl)

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won't work - why?

Anonymous mapper functions

We can split the data by cy1 with split(),

mtcars_cyl <- split(mtcars, mtcarss$cyl)

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won't work - why?

! Difficult to map

Using map (mtcars_cyl, 1m) will apply im(mtcars_cyl[i]).
The mapped vector is always used as the first argument!

Anonymous mapper functions

We can write our own functions!

mtcars_1lm <- function(.) lm(mpg ~ disp + hp + drat + wt, data = .)
map (mtcars_cyl, mtcars_1lm)

$°4°

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:

(Intercept) disp hp drat wt
52.5195 -0.0629 -0.0760 -1.4422 -3.1001

$76°

Call:

b [A o [(. S JR R [SR T A m = \

Anonymous mapper functions

Or use ~ body to create anonymous functions.

lapply(mtcars_cyl, \(.) Im(mpg ~ disp + hp + drat + wt, data = .))
map(mtcars_cyl, ~ lm(mpg ~ disp + hp + drat + wt, data = .))

$°4°

Call:
lm(formula = mpg ~ disp + hp + drat + wt, data = .)

Coefficients:

(Intercept) disp hp drat wt
52.5195 -0.0629 -0.0760 -1.4422 -3.1001

$76°

Call:

b [A o [(. S JR [ST T A m = \

Mapping mapping mapping

How would you then get the coefficients from all 3 models?
mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |[>

map(~ lm(mpg ~ disp + hp + drat + wt, data = .))

Mapping mapping mapping

How would you then get the coefficients from all 3 models?
)

mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data
mtcars_cyl |[>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))

@ Solution

lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map (~ lm(mpg ~ disp + hp + drat + wt, data = .)) |>

map (coef)
$74°
(Intercept) disp hp drat wt
52.5195 -0.0629 -0.0760 -1.4422 -3.1001

Mapping arguments

Any arguments after your function are passed to all functions.

f(,)

f(,)

map (, T,) |:>

f(,)

] D

Mapping arguments

This works by passing through ... to the function.
x <= list(1l:5, c(1:10, NA))
map_dbl(x, ~ mean(.x, na.rm = TRUE))

[1] 3.0 5.5
map_dbl(x, mean, na.rm = TRUE)

[1] 3.0 5.5

Mapping arguments

These additional arguments are not decomposed / mapped.

f()

f(

map (, T,) |:>

f(

]

Mapping multiple arguments

It is often useful to map multiple arguments.

f(,)

f(,)

map2 (, ,) |:>

f(,)

] D

Mapping multiple arguments

Xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] ©0.552 0.637 0.623 0.383 0.662 0.276 0.600 0.544

Mapping multiple arguments

Xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] ©.552 0.637 0.623 0.383 0.662 0.276 0.600 0.544
ws <- map(l:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)

[1] ©0.529 0.648 0.620 0.364 0.669 0.320 0.582 0.554

Mapping multiple arguments

f()))
f()))
map2(, , T,) |:>
f()))
]
«) LD

Mapping many arguments

It is also possible to map any number of inputs with pmap.
n <- 1:3

min <- c(0, 10, 100)

max <- c(1l, 100, 1000)

pmap(list(n, min, max), runif) # .mapply(runif, list(n, min, max), Llist())

([11]
[1] 0.234

[[2]1]
[1] 87.9 25.3

[L3]1]
[1] 859 878 251

ts
men

g many argu

in

Mapp

pmap (

f(

f(

f(

]

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

The furrr package (future + purrr) makes it easy to use map () in

parallel, providing future_map() variants.

library(furrr)
plan(multisession, workers = 4)
future_map_dbl(xs, mean, na.rm = TRUE)

[1] ©0.552 0.637 0.623 0.383 0.662 0.276 0.600 0.544

future_map2_dbl(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.529 0.648 0.620 0.364 0.669 0.320 0.582 0.554

Reduce vectors to single values

Sometimes you want to collapse a vector, reducing it to a

single value. reduce () always returns a vector of length 1.

X <- sample(1l:100, 10)
X

[1] 85 68 49 23 63 28 55 95 32 81

sum(x)

[1] 579

Alternative to sum()
reduce(x, “+°) # Reduce(™+, x)

[1] 579

Reduce vectors to single values

The result from the function is re-used as the first argument.

reduce (

Reduce vectors to single values

O Your turn!

We're studying the letters in 3 bowls of alphabet soup.
OFE

Reduce vectors to single values

O Your turn!

We're studying the letters in 3 bowls of alphabet soup.
Use reduce() to find the letters were in all bowls of soup!

Are all letters found in the soups?

alphabet_soup <- map(c(10,24,13), sample, x=letters, replace=TRUE)
alphabet_soup

[[11]
[l:l llh|| Ilr-ll llfll lloll lloll llcll lldll llq" ||Vll l|Z||

[[21]

[l] llt“ lldll ||gll llell lldll ||nll llwll Ilyll ||hll l|n|| Ile" ||Vll l|t|| llf" Ilnll l|g|l llh||
[18] llall Il-ill llxll llwll llkll lltll llzll

S rr211

Functional adverbs

purrr also offers many adverbs, which modify a function.

Capturing conditions

m possibly(.f, otherwise): If the function errors, it
will return otherwise instead.

m safely(.f): The function now returns a list with
‘result’ and ‘error’, preventing errors.

W quietly(.f): Any conditions (messages, warnings,
printed output) are now captured into a list.

Functional adverbs

purrr also offers many adverbs, which modify a function.

Changing results

®m negate(.f) will return !result.

Chaining functions

m compose(...) will chain functions together like a
chain of piped functions.

Functional adverbs

purrr also offers many adverbs, which modify a function.

@ Functions modifying functions?

These functions are all function factories!

More specifically they are known as function operators
since both the input and output is a function.

memoise: :memoise() IS also a function operator.

	Programming paradigms
	Functional programming
	Functional problem solving

