
1

ETC4500/ETC5450
AdvancedRprogramming

Week 7: Reactive programming with
targets and renv

Outline

1 Reactive programming

2 Caching

3 targets

4 Reproducible environments

2

Outline

1 Reactive programming

2 Caching

3 targets

4 Reproducible environments

3

Regular (imperative) programming

Consider how code is usually evaluated. . .
a <- 1
b <- 2
x <- a + b
x

What is x?
a <- -1
x

What is x now?

4

Regular (imperative) programming

� Predictable programming

All programming we’ve seen so far evaluates code in se-
quential order, line by line.

Since x was not re-evaluated, its value stays the same even
when its inputs have changed.

5

Reactive programming

Within a reactive programming paradigm, objects react to
changes in their inputs and automatically update their value!

. Disclaimer

Reactive programming is a broad and diverse paradigm,
we’ll focus only on the basic concepts and how they apply
in shiny applications.

6

Reactive programming

Within a reactive programming paradigm, objects react to
changes in their inputs and automatically update their value!

. Disclaimer

Reactive programming is a broad and diverse paradigm,
we’ll focus only on the basic concepts and how they apply
in shiny applications.

6

Reactive programming

We can implement reactivity with functions & environments.
library(rlang)
react <- function(e) new_function(alist(), expr(eval(!!enexpr(e))))

We’ll learn how this function works later (metaprogramming).

Reactive programming is also smarter about ‘invalidation’,
results are cached and reused if the inputs aren’t changed.

7

Reactive programming

How does reactive programming differ?
a <- 1
b <- 2
y <- react(a + b)
y()

What is y?
a <- -1
y()

What is y now?

8

Reactive programming

� (Un)predictable programming?

Reactive programming can be disorienting!

Reactive objects invalidate whenever their inputs change,
and so its value will be recalculated and stay up-to-date.

9

Reactive programming

\ Your turn!
a <- 1
b <- 2
y <- react(a + b)
y()

When was a + b evaluated?

How does this differ from ordinary (imperative) code?

10

Imperative and declarative programming

Imperative programming

Specific commands are carried out immediately.
Usually direct and exact instructions.
e.g. read in data from this file.

Declarative programming

Specific commands are carried out when needed.
Expresses higher order goals / constraints.
e.g. make sure this dataset is up to date every time I see it.

11

Use cases for reactive programming

, Use-less cases

This paradigm is rarely needed or used in R for data analysis.

� Useful cases

Reactive programming is useful for developing user applications
(including web apps!).

In R, the shiny package uses reactive programming for writing
app interactivity.

12

Outline

1 Reactive programming

2 Caching

3 targets

4 Reproducible environments

13

Caching: using rds
if (file.exists("results.rds")) {
res <- readRDS("results.rds")

} else {
res <- compute_it() # a time-consuming function
saveRDS(res, "results.rds")

}

Equivalently. . .
res <- xfun::cache_rds(

compute_it(), # a time-consuming function
file = "results.rds"

)

14

Caching: using rds
if (file.exists("results.rds")) {
res <- readRDS("results.rds")

} else {
res <- compute_it() # a time-consuming function
saveRDS(res, "results.rds")

}

Equivalently. . .
res <- xfun::cache_rds(
compute_it(), # a time-consuming function
file = "results.rds"

)

14

Caching: using rds
compute <- function(...) {
xfun::cache_rds(rnorm(6), file = "results.rds", ...)

}
compute()

[1] 1.113 -0.163 -0.557 -0.428 -0.444 -0.503
compute()

[1] 1.113 -0.163 -0.557 -0.428 -0.444 -0.503
compute(rerun = TRUE)

[1] -0.5011 1.0217 0.1034 -1.7602 -0.0269 2.1689
compute()

[1] -0.5011 1.0217 0.1034 -1.7602 -0.0269 2.1689

15

Caching downloads

You often want to prevent downloads of the same data
multiple times.
download_data <- function(url) {
dest_folder <- tempdir()
sanitized_url <- stringr::str_replace_all(url, "/", "_")
dest_file <- file.path(dest_folder, paste0(sanitized_url, ".rds"))
if (file.exists(dest_file)) {
data <- readRDS(dest_file)

} else {
data <- read_tsv(url, show_col_types = FALSE)
saveRDS(data, dest_file)

}
data

}
bulldozers <- download_data("https://robjhyndman.com/data/Bulldozers.csv")

16

Caching: memoise

Caching stores results of computations so they can be reused.
library(memoise)
sq <- function(x) {
print("Computing square of 'x'")
x**2

}
memo_sq <- memoise(sq)
memo_sq(2)

[1] "Computing square of 'x'"

[1] 4
memo_sq(2)

[1] 4

17

Caching: Rmarkdown
```{r import-data, cache=TRUE}
d <- read.csv('my-precious.csv')
```

```{r analysis, dependson='import-data', cache=TRUE}
summary(d)
```

Requires explicit dependencies or changes not detected.
Changes to functions or packages not detected.
Good practice to frequently clear cache to avoid
problems.
targets is a better solution

18

Caching: Quarto
```{r}
#| label: import-data
#| cache: true
d <- read.csv('my-precious.csv')
```

```{r}
#| label: analysis
#| dependson: import-data
#| cache: true
summary(d)
```

Same problems as Rmarkdown
targets is a better solution

19

Outline

1 Reactive programming

2 Caching

3 targets

4 Reproducible environments

20

targets: reproducible computation at scale

21Some images from https://wlandau.github.io/targets-tutorial

Supports a clean, modular,
function-oriented programming style.

Learns how your pipeline fits together.

Runs only the necessary computation.

Abstracts files as R objects.

Similar to Makefiles, but with R
functions.

Interconnected tasks

22

Interconnected tasks

22

Interconnected tasks

22

Dilemma: short runtimes or reproducible results?

23

Let a pipeline tool do the work

Save time while ensuring computational reproducibility.
Automatically skip tasks that are already up to date.

24

Typical project structure

no_targets.R
library(tidyverse)
library(fable)
source("R/functions.R")
my_data <- read_csv("data/my_data.csv")
my_model <- model_function(my_data)

_targets.R
library(targets)
tar_option_set(packages = c("tidyverse", "fable"))
tar_source() # source all files in R folder
list(

tar_target(my_file, "data/my_data.csv", format = "file"),
tar_target(my_data, read_csv(my_file)),
tar_target(my_model, model_function(my_data))

)

25

Typical project structure

no_targets.R
library(tidyverse)
library(fable)
source("R/functions.R")
my_data <- read_csv("data/my_data.csv")
my_model <- model_function(my_data)

_targets.R
library(targets)
tar_option_set(packages = c("tidyverse", "fable"))
tar_source() # source all files in R folder
list(
tar_target(my_file, "data/my_data.csv", format = "file"),
tar_target(my_data, read_csv(my_file)),
tar_target(my_model, model_function(my_data))

)

25

Generate _targets.R in working directory
library(targets)
tar_script()

26

Activity

Set up a project using targets: tar_script()

Add targets to generate a plot from the mtcars dataset,
and fit a linear regression model.

Make the project using tar_make()

Visualize the pipeline using tar_visnetwork()

27

Useful targets commands

tar_make() to run the pipeline.
tar_make(starts_with("fig")) to run only targets
starting with “fig”.
tar_read(object) to read a target.
tar_load(object) to load a target.
tar_load_everything() to load all targets.
tar_manifest() to list all targets
tar_visnetwork() to visualize the pipeline.
tar_destroy() to remove all targets.
tar_outdated() to list outdated targets.

28

Debugging

Errored targets to return NULL so pipeline continues.
tar_option_set(error = "null")

See error messages for all targets.
tar_meta(fields = error, complete_only = TRUE)

See warning messages for all targets.
tar_meta(fields = warnings, complete_only = TRUE)

29

Debugging

Errored targets to return NULL so pipeline continues.
tar_option_set(error = "null")

See error messages for all targets.
tar_meta(fields = error, complete_only = TRUE)

See warning messages for all targets.
tar_meta(fields = warnings, complete_only = TRUE)

29

Debugging

Errored targets to return NULL so pipeline continues.
tar_option_set(error = "null")

See error messages for all targets.
tar_meta(fields = error, complete_only = TRUE)

See warning messages for all targets.
tar_meta(fields = warnings, complete_only = TRUE)

29

Debugging

Try loading all available targets: tar_load_everything().
Then run the command of the errored target in the console.
Pause the pipeline with browser()

Use the debug option: tar_option_set(debug =
"target_name")

Save the workspaces:
▶ tar_option_set(workspace_on_error = TRUE)
▶ tar_workspaces()
▶ tar_workspace(target_name)

30

Random numbers

Each target runs with its own seed based on its name and
the global seed from tar_option_set(seed = ???)
So running only some targets, or running them in a
different order, will not change the results.

31

Folder structure

.git/

.Rprofile

.Renviron
renv/
index.Rmd
_targets/
_targets.R
_targets.yaml
R/

functions_data.R
functions_analysis.R
functions_visualization.R

data/
input_data.csv

32

_targets.R with quarto
library(targets)
library(tarchetypes) 1
tar_source() # source all files in R folder
tar_option_set(packages = c("tidyverse", "fable"))
list(
tar_target(my_file, "data/my_data.csv", format = "file"),
tar_target(my_data, read_csv(my_file)),
tar_target(my_model, model_function(my_data)),
tar_quarto(report, "file.qmd", extra_files = "references.bib") 2
)

1 Load tarchetypes package for quarto support.
2 Add a quarto target.

Replace quarto chunks with tar_read() or tar_load().
33

Chunk options

Chunk with regular R code
```{r}
#| label: fig-chunklabel
#| fig-caption: My figure
mtcars |>
ggplot(aes(x = mpg, y = wt)) +
geom_point()

```

Chunk with targets
```{r}
#| label: fig-chunklabel
#| fig-caption: My figure
tar_read(my_plot)
```

34

Chunk options

Chunk with regular R code
```{r}
#| label: fig-chunklabel
#| fig-caption: My figure
mtcars |>
ggplot(aes(x = mpg, y = wt)) +
geom_point()

```

Chunk with targets
```{r}
#| label: fig-chunklabel
#| fig-caption: My figure
tar_read(my_plot)
```

34

Exercise

Add a quarto document to your targets project that includes
the plot and the output from the linear regression model.

35

Outline

1 Reactive programming

2 Caching

3 targets

4 Reproducible environments

36

Reproducible environments

To ensure that your code runs the same way on different
machines and at different times, you need the computing
environment to be the same.

1 Operating system
2 System components
3 R version
4 R packages

Solutions for 1–4: Docker, Singularity, containerit, rang
Solutions for 4: packrat, checkpoint, renv

37

Reproducible environments

38

Creates project-specific R
environments.
Uses a package cache so you are not
repeatedly installing the same
packages in multiple projects.
Does not ensure R itself, system
dependencies or the OS are the same.
Not a replacement for Docker or
Apptainer.

Reproducible environments

39

Can use packages from CRAN,
Bioconductor, GitHub, Gitlab,
Bitbucket, etc.
renv::init() to initialize a new
project.
renv::snapshot() to save state of
project to renv.lock.
renv::restore() to restore project
as saved in renv.lock.

renv package

40

renv package

renv::install() can install from CRAN, Bioconductor,
GitHub, Gitlab, Bitbucket, etc.
renv uses a package cache so you are not repeatedly
installing the same packages in multiple projects.
renv::update() gets latest versions of all dependencies
from wherever they were installed from.
renv::deactivate(clean = TRUE) will remove the renv
environment.

41

Activity

Add renv to your targets project.

42

Example paper

43

Hyndman RJ, Rostami-
Tabar B (2024) Forecasting
interrupted time series,
Journal of the Operational
Research Society, in press.

§ bahmanrostamitabar/
forecasting_interrupted_time_series

https://github.com/bahmanrostamitabar/forecasting_interrupted_time_series
https://github.com/bahmanrostamitabar/forecasting_interrupted_time_series

	Reactive programming
	Caching
	targets
	Reproducible environments

