
1

ETC4500/ETC5450
Advanced R programming

Week 7: Object-oriented programming
(part 2)

arp.numbat.space

https://arp.numbat.space

Outline

1 Assignments

2 Programming paradigms

3 Object oriented programming

2

Outline

1 Assignments

2 Programming paradigms

3 Object oriented programming

3

Assignment 2

Questions?
Due 19 April 2024

4

Outline

1 Assignments

2 Programming paradigms

3 Object oriented programming

5

Programming paradigms

Functional programming (W5)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Object-oriented programming (W6-W7)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

6

Programming paradigms

Functional programming (W5)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Object-oriented programming (W6-W7)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

6

Programming paradigms

Literate programming (W7)

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

Reactive programming (W8)

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.

7

Programming paradigms

Literate programming (W7)

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

Reactive programming (W8)

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.

7

Outline

1 Assignments

2 Programming paradigms

3 Object oriented programming

8

Object oriented programming

S3

The OO system used by most of CRAN.
Very simple (and ‘limited’) compared to other systems.

vctrs

Builds upon S3 to make creating vectors easier.
Good practices inherited by default.

9

Object oriented programming

S3

The OO system used by most of CRAN.
Very simple (and ‘limited’) compared to other systems.

vctrs

Builds upon S3 to make creating vectors easier.
Good practices inherited by default.

9

S3 Recap: Objects and methods

Unlike most OO systems where methods belong to
objects/data, S3 methods belong to ‘generic’ functions.

Recall that functions in R are objects like any other.

� Self awareness

In S3, there is no concept of ‘self’ since the relevant objects
are available as function arguments.
However S3 is self-aware of registered methods, allowing
NextMethod() to call the S3 method of the inherited class.

10

S3 Recap: Objects and methods

Unlike most OO systems where methods belong to
objects/data, S3 methods belong to ‘generic’ functions.

Recall that functions in R are objects like any other.

� Self awareness

In S3, there is no concept of ‘self’ since the relevant objects
are available as function arguments.
However S3 is self-aware of registered methods, allowing
NextMethod() to call the S3 method of the inherited class.

10

S3 Recap: S3 dispatch

To use S3, we call the generic function (e.g. plot()).
plot

function (x, y, ...)
UseMethod("plot")
<bytecode: 0x55d378d131c8>
<environment: namespace:base>

11

S3 Recap: S3 dispatch

This function looks at the inputs and dispatches (uses) the
appropriate method for the input variable class/type.
stats:::plot.density

function (x, main = NULL, xlab = NULL, ylab = "Density", type = "l",
zero.line = TRUE, ...)

{
if (is.null(xlab))

xlab <- paste("N =", x$n, " Bandwidth =", formatC(x$bw))
if (is.null(main))

main <- sub("[.]default", "", deparse(x$call))
plot.default(x, main = main, xlab = xlab, ylab = ylab, type = type,

...)
if (zero.line)

abline(h = 0, lwd = 0.25, col = "gray")
invisible(NULL)

}
<bytecode: 0x55d37a213cd0>
<environment: namespace:stats>

12

S3 Recap: S3 dispatch

If there isn’t a registered method for the object, the default
method for the generic will be used.
graphics:::plot.default

function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes, panel.first = NULL,
panel.last = NULL, asp = NA, xgap.axis = NA, ygap.axis = NA,
...)

{
localAxis <- function(..., col, bg, pch, cex, lty, lwd) Axis(...)
localBox <- function(..., col, bg, pch, cex, lty, lwd) box(...)
localWindow <- function(..., col, bg, pch, cex, lty, lwd) plot.window(...)
localTitle <- function(..., col, bg, pch, cex, lty, lwd) title(...)
xlabel <- if (!missing(x))

deparse1(substitute(x))
ylabel <- if (!missing(y))

deparse1(substitute(y))
xy <- xy.coords(x, y, xlabel, ylabel, log)
if (is.null(xlab))

xlab <- xy$xlab
if (is.null(ylab))

ylab <- xy$ylab
if (is.null(xlim))

xlim <- range(xy$x[is.finite(xy$x)])
if (is.null(ylim))

ylim <- range(xy$y[is.finite(xy$y)])
dev.hold()
on.exit(dev.flush())
plot.new()
localWindow(xlim, ylim, log, asp, ...)
panel.first
plot.xy(xy, type, ...)
panel.last
if (axes) {

localAxis(if (is.null(y))
xy$x

else x, side = 1, gap.axis = xgap.axis, ...)
localAxis(if (is.null(y))

x
else y, side = 2, gap.axis = ygap.axis, ...)

}
if (frame.plot)

localBox(...)
if (ann)

localTitle(main = main, sub = sub, xlab = xlab, ylab = ylab,
...)

invisible()
}
<bytecode: 0x55d37c912348>
<environment: namespace:graphics>

13

Creating an S3 generic

S3 generics are work like any ordinary function, but they
include UseMethod() which calls the appropriate method.

\ Your turn!

Create an S3 generic called “reverse”.
This function will reverse objects. For example,

reverse("stressed") becomes "desserts",
reverse(7919) becomes 9197,
reverse(1.9599) becomes 9959.1.

14

Writing S3 methods

An S3 method is an ordinary function with some constraints:

The function’s name is of the form <generic>.<class>,
The function’s arguments match the generic’s arguments,
The function is registered as an S3 method (for packages).

This looks like:
#' Documentation for the method
#' @method <generic> <class>
<generic>.<class> <- function(<generic args>, <method args>, ...) {
The code for the method

}

15

Writing S3 methods

\ Your turn!

Write methods for reversing character, integer, and
double objects.

reverse("stressed") becomes "desserts",
reverse(7919L) becomes 9197L,
reverse(1.9599) becomes 9959.1.

Hint: stringi::stri_reverse() will reverse a string.
The integer and double methods should return an integer
and double respectively. 16

Writing S3 defaults

What if we tried to reverse the current date;
reverse(Sys.Date())?

\ Your turn!

Question: what should the default behaviour be?

Raise an error?
Return a reversed string?
Something else entirely?

17

Writing S3 defaults

What if we tried to reverse the current date;
reverse(Sys.Date())?

\ Your turn!

Question: what should the default behaviour be?

Raise an error?
Return a reversed string?
Something else entirely?

17

Writing S3 defaults

What if we tried to reverse the current date;
reverse(Sys.Date())?

\ Your turn!

Question: what should the default behaviour be?

Raise an error?
Return a reversed string?
Something else entirely?

17

Creating your own S3 objects

S3 methods are (mostly) dispatched based on the class().
class("stressed")

[1] "character"
class(7919L)

[1] "integer"
class(1.9599)

[1] "numeric"

18

Creating your own S3 objects

To create an S3 object, we add a class to an object.

This is usually done with structure(), for example:
e <- structure(list(numerator = 2721, denominator = 1001), class = "fraction")
e

$numerator
[1] 2721

$denominator
[1] 1001

attr(,"class")
[1] "fraction"

19

Creating your own S3 objects

The structure() function is usually only used within other
functions made for end-users. For example,

lm() returns a list with class "lm", and
tibble() returns a data.frame (list) with classes "tbl_df",
"tbl", and "data.frame".

\ Your turn!

Create fraction(), which returns fraction objects.
This function should check that the inputs are suitable

20

Creating your own S3 objects

The structure() function is usually only used within other
functions made for end-users. For example,

lm() returns a list with class "lm", and
tibble() returns a data.frame (list) with classes "tbl_df",
"tbl", and "data.frame".

\ Your turn!

Create fraction(), which returns fraction objects.
This function should check that the inputs are suitable

20

Creating your own S3 objects

The fraction class doesn’t yet have any methods, so it
inherits methods from its list type.

Usually we would create a method for printing S3 objects.
print.fraction <- function(x, ...) {
paste(x$numerator, x$denominator, sep = "/")

}
e

2721/1001

21

Creating your own S3 objects

\ Your turn!

Create a reverse() method for the fraction object class,
which inverts the numerator and denominator.

Finished early?
Write a method for converting a fraction into a number.

22

Creating your own S3 vectors (with vctrs)

The vctrs package is helpful for creating custom vectors.

It is built upon S3, so the same approach for creating S3
generics and S3 methods also applies to vctrs.

� S3 or vctrs?

Regular S3 is useful for creating singular objects
vctrs is useful for creating vectorised objects

23

Creating your own S3 vectors (with vctrs)

� Why vctrs?

vctrs simplifies the complicated parts in creating vectors
easy subsetting
nice printing
predictable recycling
casting / coercion
tidyverse compatibility

24

Examples of vctrs packages

Lots of vctrs including:

IP addresses
Spatial geometries
Time
uncertainty

https://github.com/krlmlr/awesome-vctrs

25

https://github.com/krlmlr/awesome-vctrs

Some packages I’ve made that use vctrs

distributional

Distributions of various shapes in vectors

mixtime

Time points/intervals of various granularities in vectors

graphvec

Graph factors, storing graph edges between levels.

fabletools

Custom data frames ‘mable’, ‘fable’, and ‘dable’. 26

https://github.com/mitchelloharawild/distributional/
https://github.com/mitchelloharawild/mixtime
https://github.com/mitchelloharawild/graphvec/
https://github.com/tidyverts/fabletools/

Creating a new vctr

The basic way to produce a vctr is with vctrs::new_vctr().

Just like structure(), you provide an object and its new class.
attendance <- vctrs::new_vctr(c(80, 70, 75, 50), class = "percent")
attendance

<percent[4]>
[1] 80 70 75 50

27

Creating a new vctr

As with S3, functions provide ways for users to create vectors.
percent <- function(x) {
vctrs::new_vctr(x, class = "percent")

}
attendance <- percent(c(80, 70, 75, 50))
attendance

<percent[4]>
[1] 80 70 75 50

28

Creating a new vctr

Don’t forget to check the inputs, vctrs provides helpful
functions to make this easier and provide informative errors.
percent <- function(x) {
vctrs::vec_assert(x, numeric())
vctrs::new_vctr(x, class = "percent")

}
percent("80%")

Error in `percent()`:
! `x` must be a vector with type <double>.
Instead, it has type <character>.

29

Creating a new vctr

It’s useful to provide default arguments in this function which
creates a length 0 vector (similar to how empty vectors are
created with numeric() and character()).
percent <- function(x = numeric()) {
vctrs::vec_assert(x, numeric())
vctrs::new_vctr(x, class = "percent")

}
percent()

<percent[0]>

30

Creating a new vctr

While vctrs provides a nice print method, we need to specify
how our vector should be formatted.
format.percent <- function(x, ...) {
paste0(vctrs::vec_data(x), "%")

}
attendance

<percent[4]>
[1] 80% 70% 75% 50%

31

The rcrd type

A special type of vctr is a record (rcrd).

A record is a list containing equal length vectors, and its size is
the length its vectors rather than its list.

� Record indexing

Usually in R, indexing happens across the list. With the
record type, indexing happens within the list’s vectors.

32

The rcrd type

� Length of a data frame

Usually the length of data refers to the number of rows,
but in R it is the number of columns since it is a list.
length(mtcars)

[1] 11
In vctrs, data is a record so we get the number of rows.
vctrs::vec_size(mtcars)

[1] 32
33

Creating a new rcrd

A record is created with the vctrs::new_rcrd() function.
wallet <- vctrs::new_rcrd(
list(amt = c(10, 38), unit = c("AU$", "¥")), class = "currency"

)
format.currency <- function(x, ...) {
paste0(vctrs::field(x, "unit"), vctrs::field(x, "amt"))

}
wallet

<currency[2]>
[1] AU$10 ¥38

34

Creating a new rcrd

\ Your turn!

Rewrite the fraction() function to use the rcrd data type.

You will also need to update the methods:
Obtain the numerator and denominator with field().
Replace the print method with a format method.
Remove the print.fraction method with rm().

35

The list_of type

list_of() vectors require list elements to be the same type.

It can be created with list_of(), or more easily converted to
with as_list_of(). It behaves identically to new_vctr().
vctrs::as_list_of(list(80, 70, 75, 50), .ptype = numeric())

<list_of<double>[4]>
[[1]]
[1] 80

[[2]]
[1] 70

[[3]]
[1] 75

[[4]]
[1] 50

36

Prototypes

Notice the .ptype when we used as_list_of()?

ptype is shorthand for prototype, which is a size-0 vector.

� Prototype attributes!

Prototypes contains all relevant attributes of the object,
such as class, dimension, and levels of factors.

37

Prototypes

Obtain prototypes of a vector with vctrs::vec_ptype().
vctrs::vec_ptype(1:10)

integer(0)

vctrs::vec_ptype(rnorm(10))

numeric(0)

vctrs::vec_ptype(factor(letters))

factor()
Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z

vctrs::vec_ptype(attendance)

<percent[0]> 38

vctr, rcrd, or list_of?

\ Your turn!

What’s better? The vctr type or list_of?

It depends! If your vector is based on. . .

a single atomic vector (like percent) then vctr,
two or more atomic vectors (like fraction), then rcrd,
complicated objects (like lm), then list_of.

39

vctr, rcrd, or list_of?

\ Your turn!

What’s better? The vctr type or list_of?

It depends! If your vector is based on. . .

a single atomic vector (like percent) then vctr,
two or more atomic vectors (like fraction), then rcrd,
complicated objects (like lm), then list_of.

39

That’s it! You have created a new vector for R!

ñ Time to celebrate with a break!

Ask questions, try using your new vector in various ways.

40

Methods for vctrs

While our new vectors looks pretty and fits right in with our
tidy tibbles, it isn’t very useful yet.

� Adding features

Since vctrs is built upon S3, the same approach for creating
generic functions and methods applies to vctrs.

However there are also some important vector specific
methods which should be written to improve usability.

41

Methods for vctrs

While our new vectors looks pretty and fits right in with our
tidy tibbles, it isn’t very useful yet.

� Adding features

Since vctrs is built upon S3, the same approach for creating
generic functions and methods applies to vctrs.

However there are also some important vector specific
methods which should be written to improve usability.

41

(Proto)typing

We saw earlier how R coerces vectors of different types.
c("desserts", 10)

[1] "desserts" "10"

c(pi, 0L)

[1] 3.14 0.00

c(-1, TRUE, FALSE)

[1] -1 1 0

c(1, Sys.Date())

[1] 1 19850
42

(Proto)typing

When combining or comparing vectors of different types, R will
(usually) coerce to the ‘richest’ type.

43

(Proto)typing

vctrs doesn’t make any assumptions about how to coerce your
vector, and instead raises an error.
library(vctrs)
vec_c(attendance, 0.8)

Error in `vec_c()`:
! Can't combine `..1` <percent> and `..2` <double>.

44

(Proto)typing

We can specify what the common (‘richest’) type is by writing
vctrs::vec_ptype2() methods.
#' @export
vec_ptype2.percent.double <- function(x, y, ...) {
percent() # Prototype since this produces size-0

}
vctrs::vec_ptype2(attendance, 0.8)

<percent[0]>

vctrs::vec_ptype2(0.8, attendance)

Error:
! Can't combine `0.8` <double> and `attendance` <percent>.

45

(Proto)typing

Common typing uses double-dispatch.

We need to define the common type in both directions.
#' @export
vec_ptype2.double.percent <- function(x, y, ...) {
percent() # Prototype since this produces size-0

}
vctrs::vec_ptype2(attendance, 0.8)

<percent[0]>

vctrs::vec_ptype2(0.8, attendance)

<percent[0]>

46

(Proto)typing

\ Your turn!

Write methods that define the common (proto)type be-
tween fraction and double as fraction -> double.

47

Double dispatch

Unfortunately c() from base R can’t (yet) be changed to
support double-dispatch with S3. Usually this isn’t a problem,
c(attendance, attendance)

<percent[8]>
[1] 80% 70% 75% 50% 80% 70% 75% 50%
c(attendance, 0.8)

<percent[5]>
[1] 80% 70% 75% 50% 0.8%

48

Double dispatch

but if your class isn’t used in the first argument. . .
c(0.8, attendance)

[1] 0.8 80.0 70.0 75.0 50.0

. . . your common (proto)type will be ignored!

49

Double dispatch

vctrs uses double dispatch when needed, and using
vctrs::vec_c() fixes many coercion problems in R.
vctrs::vec_c(0.8, attendance)

<percent[5]>
[1] 0.8% 80% 70% 75% 50%
vctrs::vec_c(1, Sys.Date())

Error in `vctrs::vec_c()`:
! Can't combine `..1` <double> and `..2` <date>.

50

Double dispatch

ñ Double dispatch inheritence

Double dispatch in vctrs doesn’t work with inheritance and
so:

NextMethod() can’t be used
Default methods aren’t inherited/used.

51

Casting and coercion

, Converting percentages

Notice earlier how combining percentages with numbers
gave the incorrect result?
This is because we haven’t written a method for converting
numbers into percentages.

The vctrs::vec_cast() generic is used to convert/coerce
(‘cast’) one type into another. Time to write more methods!

52

Casting and coercion

vctrs::vec_cast() also uses double dispatch.
vec_cast.double.percent <- function(x, to, ...) {
vec_data(x)/100

}
vec_cast.percent.double <- function(x, to, ...) {
percent(x*100)

}

vec_cast(0.8, percent())

<percent[1]>
[1] 80%

vec_cast(percent(80), double())

[1] 0.8 53

Casting and coercion

With both vec_ptype2() and vec_cast() methods for
percentages and doubles it is now possible to combine them.
vctrs::vec_c(0.8, attendance)

<percent[5]>
[1] 80% 80% 70% 75% 50%

We can also use coercion to easily perform comparisons.
attendance > 0.7

[1] TRUE FALSE TRUE FALSE
54

Casting and coercion

\ Your turn!

Write a method for casting from a fraction to a double.
Does this work with as.numeric()?

55

Math and arithmetic

Methods also need to be written for math and arithmetic.

vec_math() implements mathematical functions like
mean(attendance)

<percent[1]>
[1] 68.75%

vec_arith() implements arithmetic operations like
attendance + percent(0.1)

Error in `vec_arith()`:
! <percent> + <percent> is not permitted

56

Math and arithmetic

Since attendance is a simple numeric, the default vec_math
method works fine. The default vec_math function is
essentially:
vec_math.percent <- function(.fn, .x, ...) {
out <- vec_math_base(.fn, .x, ...)
vec_restore(out, .x)

}

1 Apply the math to the underlying numbers
2 Restore the percentage class

57

Math and arithmetic

Unlike double dispatch in vec_ptype2() and vec_cast(), we
currently need to implement our own secondary dispatch for
vec_arith().
vec_arith.percent <- function(op, x, y, ...) {
UseMethod("vec_arith.percent", y)

}
vec_arith.percent.default <- function(op, x, y, ...) {
stop_incompatible_op(op, x, y)

}

58

Math and arithmetic

Then we can create methods for arithmetic.
vec_arith.percent.percent <- function(op, x, y, ...) {
out <- vec_arith_base(op, x, y)
vec_restore(out, to = percent())

}
percent(40) + percent(20)

<percent[1]>
[1] 60%

59

Math and arithmetic

Then we can create methods for arithmetic.
vec_arith.percent.numeric <- function(op, x, y, ...) {
out <- vec_arith_base(op, x, vec_cast(y, percent()))
vec_restore(out, to = percent())

}
percent(40) + 0.3

<percent[1]>
[1] 70%

0.3 + percent(40)

Error in `vec_arith()`:
! <double> + <percent> is not permitted

60

Math and arithmetic

Then we can create methods for arithmetic.
vec_arith.numeric.percent <- function(op, x, y, ...) {
out <- vec_arith_base(op, vec_cast(x, percent()), y)
vec_restore(out, to = percent())

}
percent(40) + 0.3

<percent[1]>
[1] 70%

0.3 + percent(40)

<percent[1]>
[1] 70%

61

Math and arithmetic

\ Your turn!

Add support for math and arithmetic for the fraction class.

Hint: cast your fraction to a double and then use the base
math/arith function, returning a double is fine.

Finished early?
Try to extend vec_arith() so that it retains the fraction
class for +, -, *, / operations. 62

	Assignments
	Programming paradigms
	Object oriented programming

