
1

ETC4500/ETC5450
Advanced R programming

Week 8: Reactive and literate
programming

arp.numbat.space

https://arp.numbat.space

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

2

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

3

Assignments 3 and 4

Assignment 3 due 10 May
Assignment 4 due 24 May

4

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

5

Programming paradigms

Functional programming (W5)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Object-oriented programming (W6-W7)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

6

Programming paradigms

Functional programming (W5)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Object-oriented programming (W6-W7)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

6

Programming paradigms

Reactive programming (W8)

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.

Literate programming (W8)

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

7

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

8

Regular (imperative) programming

Consider how code is usually evaluated. . .
a <- 1
b <- 2
x <- a + b
x

What is x?
a <- -1
x

What is x now?

9

Regular (imperative) programming

� Predictable programming

All programming we’ve seen so far evaluates code in se-
quential order, line by line.

Since x was not re-evaluated, its value stays the same even
when its inputs have changed.

10

Reactive programming

Within a reactive programming paradigm, objects react to
changes in their inputs and automatically update their value!

. Disclaimer

Reactive programming is a broad and diverse paradigm,
we’ll focus only on the basic concepts and how they apply
in shiny applications.

11

Reactive programming

Within a reactive programming paradigm, objects react to
changes in their inputs and automatically update their value!

. Disclaimer

Reactive programming is a broad and diverse paradigm,
we’ll focus only on the basic concepts and how they apply
in shiny applications.

11

Reactive programming

We can implement reactivity with functions & environments.
library(rlang)
react <- function(e) new_function(alist(), expr(eval(!!enexpr(e))))

We’ll learn how this function works later (metaprogramming).

Reactive programming is also smarter about ‘invalidation’,
results are cached and reused if the inputs aren’t changed.

12

Reactive programming

How does reactive programming differ?
a <- 1
b <- 2
y <- react(a + b)
y()

What is y?
a <- -1
y()

What is y now?

13

Reactive programming

� (Un)predictable programming?

Reactive programming can be disorienting!

Reactive objects invalidate whenever their inputs change,
and so its value will be recalculated and stay up-to-date.

14

Reactive programming

\ Your turn!

a <- 1
b <- 2
y <- react(a + b)
y()

When was a + b evaluated?

How does this differ from ordinary (imperative) code?

15

Imperative and declarative programming

Imperative programming

Specific commands are carried out immediately.
Usually direct and exact instructions.
e.g. read in data from this file.

Declarative programming

Specific commands are carried out when needed.
Expresses higher order goals / constraints.
e.g. make sure this dataset is up to date every time I see it.

16

Imperative and declarative programming

Mastering Shiny: Chapter 3 (Basic Reactivity)

With imperative code you say “Make me a sandwich”.

With declarative code you say “Ensure there is a sandwich
in the refrigerator whenever I look inside of it”.

Imperative code is assertive;
declarative code is passive-aggressive.

17

Use cases for reactive programming

, Use-less cases

This paradigm is rarely needed or used in R for data analysis.

� Useful cases

Reactive programming is useful for developing user applications
(including web apps!).

In R, the shiny package uses reactive programming for writing
app interactivity.

18

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

19

A shiny app

Most shiny apps are organised into several files.

ui.R: The specification of the user interface
server.R: The reactive code that defines app behaviour
global.R: Static global objects used across app
www/: Folder for your web data (images, css, js, etc.)

Simple apps can consist of only an app.R script.

20

Hello shiny!

\ Follow along!

Create a shiny app. Save this code as app.R.
library(shiny)
ui <- fluidPage(
textInput("name", "Enter your name: "),
textOutput("greeting")

)
server <- function(input, output, session) {
output$greeting <- renderText({
sprintf("Hello %s", input$name)

})
}
shinyApp(ui, server) 21

Hello shiny!

\ Follow along!

Launch the app by clicking Run App.

Use the text input field and see how the webpage changes.

Look at the server code to see how it ‘reacts’.

22

Shiny reactivity

Reactivity in shiny comprises of:

Reactive sources (inputs):

UI inputs input*() and values reactiveValues()

Reactive conductors (intermediates):

Expressions reactive() and events eventReactive()

Reactive endpoints (results):

UI outputs render*() and side-effects observe()
23

Reactive graphs

The reactivity of an app can be visualised with a graph.
24

Reactive graphs

The graph shows relationships between reactive elements.

25

reactlog

The reactlog package allows you to visualise an app’s reactive graph.
To enable logging of an app’s behaviour, run:
reactlog::reactlog_enable()

Then start, use, and stop your app to fill the log.
View the log with:
shiny::reactlogShow()

Or while your Shiny app is running, press the key combination Ctrl+F3 (Mac:
Cmd+F3) to see the reactive log.

26

https://rstudio.github.io/reactlog/

Hello reactlog!

\ Follow along!

Create a reactive log of the hello shiny app.

Start reactlog, then open the app and enter your name.

Close the app and view the log, see how the app reacts to
changes to the input text.

27

Reactive expressions

Reactive expressions are used in the shiny server as
intermediate calculations.

They are expressions wrapped with reactive().

For example:
simulation <- reactive(rnorm(input$n_samples))

The up-to-date value is obtained with simulation().

Whenever the input ID n_samples changes, the reactive
expression simulation invalidates.

28

Reactive expressions

Reactive expressions are used in the shiny server as
intermediate calculations.

They are expressions wrapped with reactive().

For example:
simulation <- reactive(rnorm(input$n_samples))

The up-to-date value is obtained with simulation().

Whenever the input ID n_samples changes, the reactive
expression simulation invalidates.

28

Reactive expressions

\ Follow along!

Use a reactive expression to convert the name to ALLCAPS.

Look at the reactive graph and see how it changes.

29

Preventing reactivity

Equally important to telling shiny how to react to changes, is
describing when reactions should (not) occur.

The most useful way to prevent reactivity is with req().

It is similar to stop(), silently ending the reactive chain.

req() ‘requires’ inputs to be ‘truthy’ (not FALSE or empty).

30

Preventing reactivity

Equally important to telling shiny how to react to changes, is
describing when reactions should (not) occur.

The most useful way to prevent reactivity is with req().

It is similar to stop(), silently ending the reactive chain.

req() ‘requires’ inputs to be ‘truthy’ (not FALSE or empty).

30

Preventing reactivity

\ Follow along!

Use req() to prevent reactivity until text is entered.

Update req() to require at least 3 characters inputted.

31

Preventing reactivity

Other ways reactivity might be prevented include:

Event reactivity
▶ eventReactive(rnorm(input$n_samples), input$go)
▶ observeEvent(input$go, message("Go!"))

Rate limiting
▶ throttle(reactive()): limits update frequency
▶ debounce(reactive()): waits for changes to stop

32

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

33

Literate programming

Due to Donald Knuth (Stanford), 1984
A script or document that contains an explanation of the
program logic in a natural language (e.g. English),
interspersed with snippets of source code, which can be
compiled and rerun.
Generates two representations
from a source file: formatted
documentation and “tangled” code.

34

Literate programming

As a programming approach, it never quite caught on.
But it has become the standard approach for reproducible
documents.

35

Literate programming examples

WEB (combining Pascal and TeX)
roxygen2 comments

▶ technically documentation generation rather than literate
programming

▶ documentation embedded in code, rather than code embedded
in documentation

Sweave documents
Jupyter notebooks
Rmarkdown documents
Quarto documents

36

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

37

roxygen2

roxygen2 documentation are just comments to R.
roxygen2::roxygenize():

▶ generates documentation from these comments in the form of
Rd files

▶ adds relevant lines to the NAMESPACE file.
roxygen2::roxygenize() is called by devtools::document().
Advantage: keeps documentation with the code. More
readable, less chance for errors.

38

Outline

1 Assignments
2 Programming paradigms
3 Reactive programming
4 Shiny
5 Literate programming
6 roxygen2
7 Rmarkdown

39

Markdown syntax

Markdown: a “markup” language for formatting text.

Headings:

Heading 1
Heading 2

Bold: **bold**.

Italic: *italic*.

Blockquotes:

> blockquote.
40

Markdown and Rmarkdown

Markdown (markup language):
▶ Extension either .md or .markdown.
▶ Used in many places on the web, in note-taking apps, etc.

Rmarkdown (markup language):
▶ an extension of markdown that allows for embedded R code

chunks.
▶ Extension .Rmd.

Rmarkdown (package):
▶ an R package that allows for the conversion of .Rmd files to

other formats.

41

Rmarkdown files

Structure:
1 YAML header
2 Markdown content
3 R code chunks surrounded by ```{r} and ```

4 Inline R surrounded by `r and `

Rmarkdown documents can be compiled to HTML, PDF,
Word, and other formats
Compile with rmarkdown::render("file.Rmd")

42

Rmarkdown, knitr and pandoc

rmarkdown::render()
▶ Uses knitr to run all code chunks, and “knit” the results into a

markdown file (replacing R chunks with output).
▶ Uses pandoc to convert the markdown file to the desired output

format.
▶ If PDF output is desired, LaTeX then converts the tex file (from

pandoc output) to pdf.

43

knitr functions

knitr::knit(): knits a single Rmd file — runs all code
chunks and replaces them with output in a markdown file.
knitr::purl(): extracts all R code from an Rmd file and
saves it to a new file.
knitr::spin(): knits a specially formatted R script file
into an Rmd file.

44

Rmarkdown packages

rmarkdown (to html, pdf, docx, odt, rtf, md, etc.)
bookdown (to html, pdf, epub)
blogdown (to html) – uses hugo rather than pandoc
xaringan (to html) – uses remark.js rather than pandoc
beamer (to pdf)
rticles (to pdf)
tufte (to html, pdf)
vitae (to pdf)
distill (to html)
flexdashboard (to html) 45

Some chunk options

eval: whether to evaluate the code chunk
echo: whether to display the code chunk
include: whether to include the code chunk in the output
results = 'hide' hides printed output.
results = 'asis' includes the output as is.
message: whether to display messages
warning: whether to display warnings
error = TRUE: continue even if code returns an error.
fig.cap: caption for the figure
fig.width, fig.height: width and height of the figure
cache: whether to cache the code chunk 46

Global chunk options

```{r setup, include=FALSE}
knitr::opts_chunk$set(
comment = "#>",
collapse = TRUE,
echo = FALSE,
message = FALSE,
warning = FALSE

)
```

The chunk named setup will be run before any other
chunks.

47

Debugging

The Rmarkdown document is compiled in a different
environment from your R console.
If you get an error, try running all chunks (Ctrl+Alt+R).
If you can’t reproduce the error, check the working
directory (add getwd() in a chunk).
Try setting error = TRUE on problem chunk to help you
diagnose what happens. (But change it back!)
Look at the intermediate files (.md or .tex) to see what is
happening.

48

Caching

```{r setup, include=FALSE}
knitr::opts_chunk$set(cache = TRUE)
```

or by chunk:
```{r, cache = TRUE}
```

49

Caching

When evaluating code chunks, knitr will save the results
of chunks with caching to files to be reloaded in
subsequent runs.
Caching is useful when a chunk takes a long time to run.
It will re-run if the code in the chunk changes in any way
(even comments or spacing).
Beware of inherited objects from earlier chunks. A chunk
will not re-run if inherited objects change without explicit
dependencies.
Beware of dependence on external files. 50

Caching

```{r chunk1, cache = TRUE}
x <- 1
```

```{r chunk2, cache = TRUE, dependson = "chunk1"}
y <- x*3
```

```{r chunk1, cache = TRUE}
x <- 1
```

```{r chunk2, cache = TRUE, cache.extra = x}
y <- x*3
```

51

Caching

```{r chunk1, cache = TRUE}
x <- 1
```

```{r chunk2, cache = TRUE, dependson = "chunk1"}
y <- x*3
```

```{r chunk1, cache = TRUE}
x <- 1
```

```{r chunk2, cache = TRUE, cache.extra = x}
y <- x*3
```

51

Caching

Cache will be rebuilt if:

Chunk options change except include
Any change in the code, even a space or comment
An explicit dependency changes

Do not cache if:

setting R options like options('width')
setting knitr options like opts_chunk$set()
loading packages via library() if those packages are
used by uncached chunks 52

Caching with random numbers

```{r setup, include=FALSE}
knitr::opts_chunk$set(cache.extra = knitr::rand_seed)
```

rand_seed is an unevaluated expression.
Each chunk will check if .Random.seed has been changed
since the last run.
If it has, the chunk will be re-run.

53

Some caching options

cache.comments If FALSE, changing comments does not
invalidate the cache.
cache.rebuild If TRUE, the cache will be rebuilt even if the
code has not changed. e.g.,
cache.rebuild = !file.exists("some-file")
dependson A character vector of labels of chunks that this
chunk depends on.
my_new_option A new option that you can use in your code
to invalidate the cache. e.g., my_new_option = c(x,y)
autodep If TRUE, the dependencies are automatically
determined. (May not be reliable.) 54

Caching

Build automatic dependencies among chunks
```{r setup, include=FALSE}
knitr::opts_chunk$set(cache=TRUE, autodep = TRUE)
```

Make later chunks depend on previous chunks
```{r setup, include=FALSE}
dep_prev() # Don't use with `autodep = TRUE`
```

55

Child documents

```{r, child=c('one.Rmd', 'two.Rmd')}
```

Conditional inclusion
```{r, child = if(condition) 'file1.Rmd' else 'file2.Rmd'}
```

R Script files
```{r, file = c("Rscript1.R", "Rscript2.R")}
```

Better than source("Rscript1.R") because output of
script included and dependencies tracked.

56

Child documents

```{r, child=c('one.Rmd', 'two.Rmd')}
```

Conditional inclusion
```{r, child = if(condition) 'file1.Rmd' else 'file2.Rmd'}
```

R Script files
```{r, file = c("Rscript1.R", "Rscript2.R")}
```

Better than source("Rscript1.R") because output of
script included and dependencies tracked.

56

Child documents

```{r, child=c('one.Rmd', 'two.Rmd')}
```

Conditional inclusion
```{r, child = if(condition) 'file1.Rmd' else 'file2.Rmd'}
```

R Script files
```{r, file = c("Rscript1.R", "Rscript2.R")}
```

Better than source("Rscript1.R") because output of
script included and dependencies tracked. 56

Other language engines

```{python}
print("Hello Python!")
```

```{stata}
sysuse auto
summarize
```

Python and Stata need to be installed with executables
on PATH

57

Other language engines

names(knitr::knit_engines$get())

[1] "awk" "bash" "coffee" "gawk" "groovy"
[6] "haskell" "lein" "mysql" "node" "octave"

[11] "perl" "php" "psql" "Rscript" "ruby"
[16] "sas" "scala" "sed" "sh" "stata"
[21] "zsh" "asis" "asy" "block" "block2"
[26] "bslib" "c" "cat" "cc" "comment"
[31] "css" "ditaa" "dot" "embed" "eviews"
[36] "exec" "fortran" "fortran95" "go" "highlight"
[41] "js" "julia" "python" "R" "Rcpp"
[46] "sass" "scss" "sql" "stan" "targets"
[51] "tikz" "verbatim" "ojs" "mermaid" "glue"
[56] "glue_sql" "gluesql" 58

	Assignments
	Programming paradigms
	Reactive programming
	Shiny
	Literate programming
	roxygen2
	Rmarkdown

