
1

ETC4500/ETC5450
Advanced R programming

Week 8: Object-oriented Programming

Outline

1 Programming paradigms

2 Object oriented programming

3 S3

4 S4

5 S7

2

Outline

1 Programming paradigms

2 Object oriented programming

3 S3

4 S4

5 S7

3

Programming paradigms

Functional programming (W5)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Literate programming (W6)

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

4

Programming paradigms

Functional programming (W5)

Functions are created and used like any other object.
Output should only depend on the function’s inputs.

Literate programming (W6)

Natural language is interspersed with code.
Aimed at prioritising documentation/comments.
Now used to create reproducible reports/documents.

4

Programming paradigms

Reactive programming (W7)

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.

Object-oriented programming (W8-W9)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

5

Programming paradigms

Reactive programming (W7)

Objects are expressed using code based on inputs.
When inputs change, the object’s value updates.

Object-oriented programming (W8-W9)

Functions are associated with object types.
Methods of the same ‘function’ produce
object-specific output.

5

Outline

1 Programming paradigms

2 Object oriented programming

3 S3

4 S4

5 S7

6

Object oriented programming

Encapsulation: Bundles data and methods in a class,
restricting access to internal details.

Abstraction: Simplifies complexity by exposing only
essential features of an object.

Polymorphism: Allows the same function to operate
differently on different object types.

Inheritance: Enables a new class to inherit properties and
behaviors from an existing class.

7

Object oriented programming

Inheritance is primarily useful for structuring data
infrastructure by allowing reuse and extension of existing
classes.

Encapsulation helps protect object integrity by restricting
access to internal states.

Polymorphism enables flexibility by allowing a single interface
to operate on various data types.

Abstraction simplifies complexity by highlighting essential
features, making systems easier to understand and use.

8

Generic functions and methods

A simple example: plot

9

Generic functions and methods
plot(trees)

Girth

6
5

7
5

8
5

8 10 12 14 16 18 20

65 70 75 80 85

Height

8
1
2

1
6

2
0

10 20 30 40 50 60 70

1
0

3
0

5
0

7
0

Volume

10

Generic functions and methods
m<-lm(log(Volume)~log(Girth)+log(Height),

data=trees)
par(mfrow=c(2,2),mar=c(3,1,1,1))
plot(m)

2.5 3.0 3.5 4.0

Residuals vs Fitted

15 18
16

-2 -1 0 1 2

-2
-1

0
1

2

Q-Q Residuals

18 15
16

2.5 3.0 3.5 4.0

Scale-Location
1815

16

0.00 0.05 0.10 0.15 0.20 0.25

-2
-1

0
1

2

Cook's distance 0.5

0.5

Residuals vs Leverage

18

1711

11

Generic functions and methods
plot(.leap.seconds)

0 5 10 15 20 25

1
9
8
0

2
0
0
0

Index

.le
a
p
.s

e
c
o
n
d
s

12

Generic functions and methods
plot(nhtemp)

Time

n
h
te

m
p

1910 1920 1930 1940 1950 1960 1970

4
8

5
0

5
2

5
4

13

Generic functions and methods

How does plot() work?
Giant switch statement. . .
Lots of if statements. . .
How does the behaviour update when you load packages?
???

S3 generic functions and methods!

14

Generic functions and methods

How does plot() work?
Giant switch statement. . .
Lots of if statements. . .
How does the behaviour update when you load packages?
???

S3 generic functions and methods!

14

Object systems

R has a lot of object systems

S3
[S3 vctrs]
S4
R6
R.oo, proto, ggproto,
R7
S7

15

Object oriented programming

S3

The OO system used by most of CRAN.
Very simple (and ‘limited’) compared to other systems.

vctrs

Builds upon S3 to make creating vectors easier.
Good practices inherited by default.

16

Object oriented programming

S3

The OO system used by most of CRAN.
Very simple (and ‘limited’) compared to other systems.

vctrs

Builds upon S3 to make creating vectors easier.
Good practices inherited by default.

16

Object oriented programming

S4

Formal class definitions with validation.
Supports multiple inheritance and method dispatch.

S7

Planned to be the successor of S3 and S4.
More general than S3, but still easy to use.

17

Object oriented programming

S4

Formal class definitions with validation.
Supports multiple inheritance and method dispatch.

S7

Planned to be the successor of S3 and S4.
More general than S3, but still easy to use.

17

Object oriented programming

R6

Provides reference semantics for mutable objects.
Simple and efficient compared to reference classes.

ggproto

Used in ggplot2 for extensibility.
Supports inheritance and method overloading.

18

Object oriented programming

R6

Provides reference semantics for mutable objects.
Simple and efficient compared to reference classes.

ggproto

Used in ggplot2 for extensibility.
Supports inheritance and method overloading.

18

Outline

1 Programming paradigms

2 Object oriented programming

3 S3

4 S4

5 S7

19

S3

Main topic for today

easy to start writing
no safeguards
especially good for simple, small-medium projects
can be used for large projects with a lot of attention to
documentation and communication
limited use of inheritance
basis of tidyverse and most of CRAN

20

S3 with vctrs

A helpful package for making different sorts of S3 vectors

handles a lot of formatting and subsetting details
allows for binary operators
useful if you want your vectors in a tibble
enforces some safeguards

We’ll learn more about vctrs next week!

21

S3

Back to the plot function. . .

plot() doesn’t do anything
All the work is done by methods for different classes
Methods are just ordinary functions
When you call plot, R calls the appropriate plot method

22

S3: Generic functions

Generic functions don’t do anything
All the work is done by methods for different types of
object
Methods are just ordinary functions

▶ with declarations in a package NAMESPACE
▶ or R can guess based on function name

When you call the generic function R calls the appropriate
method

23

S3: Generics and methods

\ Your turn!

Investigate these functions.
print
methods("print")
stats:::print.acf
tools:::print.CRAN_package_reverse_dependencies_and_views
plot
methods("plot")
plot.ts
stats:::plot.lm

How do generic functions relate to methods?
Also, try methods("plot") after loading another package.

24

S3: Classes

S3 classes are attributes that specify which method to use

The class() function can access (and modify) an object’s
class

Classed S3 objects are typically produced with
structure()

For example,
x <- structure(83, class = "grade")
class(x)

[1] "grade"
x

[1] 83
attr(,"class")
[1] "grade"

25

S3: Methods

methods that actually do the work ‘belong to’ generic
functions

This is unusual: most other OOP systems (Java, C++,
Python) have methods belonging to data objects

Important in R because functions are first-class objects
(Week 5)

Useful for functional programming with objects

26

S3: Creating a method
print.grade <- function(x, ...){
letter <- if (x < 50) "N"
else if (x < 60) "P"
else if (x < 70) "C"
else if (x < 80) "D"
else "HD"
cat(x," [", letter, "]", sep = "")
invisible(x)

}
x

83 [HD]

27

Creating an S3 generic

S3 generics are work like any ordinary function, but they
include UseMethod() which calls the appropriate method.

\ Your turn!

Create an S3 generic called “reverse”.
This function will reverse objects. For example,

reverse("stressed") becomes "desserts",
reverse(7919) becomes 9197,
reverse(1.9599) becomes 9959.1.

28

Writing S3 methods

An S3 method is an ordinary function with some constraints:

The function’s name is of the form <generic>.<class>,
The function’s arguments match the generic’s arguments,
The function is registered as an S3 method (for packages).

This looks like:
#' Documentation for the method
#' @method <generic> <class>
<generic>.<class> <- function(<generic args>, <method args>, ...) {
The code for the method

}

29

Writing S3 methods

\ Your turn!

Write methods for reversing character, integer, and
double objects.

reverse("stressed") becomes "desserts",
reverse(7919L) becomes 9197L,
reverse(1.9599) becomes 9959.1.

Hint: stringi::stri_reverse() will reverse a string.
The integer and double methods should return an integer
and double respectively.

30

S3: .default methods

Default methods are called when there is no specific method
for the object (no class, or no matching class).

Some examples include:

mean.default
summary.default
head.default

31

Writing S3 defaults

What if we tried to reverse the current date;
reverse(Sys.Date())?

\ Your turn!

Question: what should the default behaviour be?

Raise an error?
Return a reversed string?
Something else entirely?

32

Writing S3 defaults

What if we tried to reverse the current date;
reverse(Sys.Date())?

\ Your turn!

Question: what should the default behaviour be?

Raise an error?
Return a reversed string?
Something else entirely?

32

Writing S3 defaults

What if we tried to reverse the current date;
reverse(Sys.Date())?

\ Your turn!

Question: what should the default behaviour be?

Raise an error?
Return a reversed string?
Something else entirely?

32

S3: Defining classes

The S3 class system is simple!

R doesn’t care what class you attach to an object
You have to care
class(x) <- "lm" makes R call lm methods on x
You are responsible for these methods being appropriate
Documentation is important
No real enforcement of encapsulation

33

S3: Classed objects

You can class any object, including:

vectors plus attributes (ts, POSIXct, matrix)
lists plus attributes (lm, data.frame)
environments plus attributes

\ Your turn!

Use unclass() and str() to explore classed objects, e.g.:
unclass(.leap.seconds)
unclass(nhtemp)
unclass(trees)
m<-lm(log(Volume)~log(Girth)+log(Height),data=trees)
str(m)

34

S3: Constructors functions

These functions return classed S3 objects. They should handle
input validation and be user-friendly.

Constructor functions typically come in two forms:

complex: tibble, lm, acf, svydesign
pure: new_factor, new_difftime

Pure constructor functions simply validate inputs and produce
the classed object, while complex constructor functions
involve calculations.

35

Creating your own S3 objects

The structure() function is usually used within packages.

lm() returns a list with class "lm", and
tibble() returns a list classed "tbl_df", "tbl", and
"data.frame".

\ Your turn!

Create fraction(), which returns fraction objects.
The underlying data type is a list containing two vectors
for the two arguments: numerator and denominator.
This function should check that the inputs are suitable.

36

Creating your own S3 objects

The structure() function is usually used within packages.

lm() returns a list with class "lm", and
tibble() returns a list classed "tbl_df", "tbl", and
"data.frame".

\ Your turn!

Create fraction(), which returns fraction objects.
The underlying data type is a list containing two vectors
for the two arguments: numerator and denominator.
This function should check that the inputs are suitable.

36

Creating your own S3 objects
fraction <- function(numerator, denominator) {
if (!is.numeric(numerator) || !is.numeric(denominator)) {
stop("Both numerator and denominator must be numeric.")

}
if (denominator == 0) {
stop("Denominator cannot be zero.")

}

structure(
list(numerator = numerator, denominator = denominator),
class = "fraction"

)
}

37

Creating your own S3 objects

The fraction class doesn’t yet have any methods, so it
inherits methods from its list type.
e <- fraction(numerator = 2721, denominator = 1001)
print(e)

$numerator
[1] 2721

$denominator
[1] 1001

attr(,"class")
[1] "fraction"

38

Creating your own S3 objects

Usually we would create a method for printing S3 objects.
print.fraction <- function(x, ...) {
paste(x$numerator, x$denominator, sep = "/")

}
print(e)

[1] "2721/1001"

39

Creating your own S3 objects

\ Your turn!

Create a reverse() method for the fraction object class,
which inverts the numerator and denominator.

Finished early?
Write a method for converting a fraction into a number.

40

S3: Method dispatch

Method dispatch describes the process of calling the
appropriate method for the object’s class.

This mostly matches class(), but not always for some
primitive R object types. sloop::s3_class() shows the extra
s3 dispatch classes.
> s3_class(1)
[1] "double" "numeric"
> s3_class(matrix(1,1,1))
[1] "matrix" "double" "numeric"
> class(1)
[1] "numeric"
> class(matrix(1,1,1))
[1] "matrix" "array"

41

S3: Naming ambiguity

t is a generic
t.test is a generic
t.test.formula is a method for t.test
t.data.frame is a method for t
list is not generic
list.files isn’t a method

Avoid using . as a word separator in function names that
aren’t methods.

Use camelCase or snake_case or some other consistent
approach 42

S3: Inheritance

The class attribute of an object can have multiple elements

UseMethod() uses the first method that matches, or
default
NextMethod() uses the next method that matches

43

S3: Polite conduct

if you define a new generic, you can define methods for
new and existing classes
if you define a new class, you can define methods for new
and existing generics
don’t define methods for someone else’s class and
generic (ask them)
try not to define a generic with the same name as an
existing one

44

Outline

1 Programming paradigms

2 Object oriented programming

3 S3

4 S4

5 S7

45

S4

S4 requires classes and methods to be registered in R code
(not just in packages)

setClass defines the structure of a class
new creates a new object from a class
setMethod defines a method

It’s possible to ask an object what methods it supports and
get a reliable response.

S4 also allows multiple inheritance and multiple dispatch

46

S4: Bioconductor

Package system for high-throughput molecular biology
Large data
Structured data
Annotated data
New data types/structures all the time

It needs consistent infrastructure and large-scale
collaboration: S4

bioconductor.org

47

https://bioconductor.org

S4: Multiple dispatch

Choosing a method based on the class of more than one
argument

not very often useful
important for matrices
can be useful for plots

48

S4: Multiple inheritance

AnnDbObjBimap is a class for storing look-up tables between
different genomic identifiers (eg from different manufacturers)

It is

(by purpose) a two-way lookup object (BiMap)
(by construction) an object containing a SQLite database
(DbObj)

so it inherits generic functions from both these parents

49

S4: Creating a class

The structure of your S4 class is defined with setClass().
setClass(
"StudentGrades",
slots = list(
name = "character",
grades = "numeric"

)
)

50

S4: Creating S4 objects

S4 objects are created with the new() function.
studentGrades <- function(name, grades) {
if (!is.character(name) || length(name) != 1) {
stop("Name must be a single string.")

}
if (!is.numeric(grades)) {
stop("Grades must be numeric.")

}

new("StudentGrades", name = name, grades = grades)
}

51

S4: Creating methods

Methods are registered to S4 classes with setGeneric() and
setMethod().
setGeneric("averageGrade", function(object) {
standardGeneric("averageGrade")

})

[1] "averageGrade"
setMethod("averageGrade", "StudentGrades", function(object) {
mean(object@grades)

})

52

S4: Using S4 objects
student <- studentGrades("Alice", c(85, 90, 78))
print(student)

An object of class "StudentGrades"
Slot "name":
[1] "Alice"

Slot "grades":
[1] 85 90 78
average <- averageGrade(student)
print(paste("Average Grade:", average))

[1] "Average Grade: 84.3333333333333"

53

S4: Accessing S4 slots

Contents of an S4 object are extracted with @.

For example, the student’s name can be obtained with:
student@name

[1] "Alice"

54

Outline

1 Programming paradigms

2 Object oriented programming

3 S3

4 S4

5 S7

55

S7

S7 = S3 + S4

It aims to maintain the simplicity of S3, while adding useful
features from S4.

(and unify CRAN and Bioconductor packages!)

It’s not yet in R-Core, but it can be used via the S7 package.
library(S7)

56

S7: Creating a class

Like S4, S7 starts by defining the data structure.
student <- new_class(
name = "student",
properties = list(
name = class_character,
grades = class_double

)
)

57

S7: Self-validation

S7 additionally supports property validation
student <- new_class(
name = "student",
properties = list(
name = class_character,
grades = class_double

),
validator = function(self) {
if (any(self@grades < 0 | self@grades > 100)) {
"@grades must be between 0 and 100"

}
}

)

58

S7: S7 classes are also constructors

The S7 class student is also a (pure) constructor function.
x <- student(name = "Alice", grades = c(85, 90, 78))
x

<student>
@ name : chr "Alice"
@ grades: num [1:3] 85 90 78

The validator prevents invalid grades.
student(name = "Mitch", grades = c(-10, 140))

Error: <student> object is invalid:
- @grades must be between 0 and 100

59

S7: Creating generics

S7 generics are created with new_generic().
best_grade <- new_generic("best_grade", dispatch_args = "x")

Here we explicitly specify which argument(s) are used in
finding the appropriate method. Double (or multiple) dispatch
is supported!

60

S7: Creating methods

S7 methods are created with method<-:
method(best_grade, student) <- function(x) {
max(x@grades)

}
best_grade(x)

[1] 90

61

	Programming paradigms
	Object oriented programming
	S3
	S4
	S7

